


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试达标测试
展开沪教版(上海)七年级数学第二学期第十二章实数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的算术平方根是( )
A. B. C. D.
2、估计的值应该在( ).
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
3、﹣π,﹣3,,的大小顺序是( )
A. B.
C. D.
4、可以表示( )
A.0.2的平方根 B.的算术平方根
C.0.2的负的平方根 D.的立方根
5、的值等于( )
A. B.-2 C. D.2
6、下列说法中,正确的是( )
A.无限小数都是无理数
B.数轴上的点表示的数都是有理数
C.任何数的绝对值都是正数
D.和为0的两个数互为相反数
7、估算的值是在( )之间
A.5和6 B.6和7 C.7和8 D.8和9
8、平方根和立方根都等于它本身的数是( )
A.±1 B.1 C.0 D.﹣1
9、的相反数是( )
A. B. C. D.
10、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列各数中:12,,,,0.1010010001…(每两个1之间的0依次加1),其中,无理数有_____个.
2、的平方根是__.
3、实数,在数轴上对应的点的位置如图所示,则|a-b|-|b+a|=______.
4、若实数满足,则=_____________.
5、观察下列关于正整数的等式:
7*5*2=351410…①
8*6*3=482418…②
5*4*2=201008…③
根据你发现的规律,请计算3*4*5=_____.
三、解答题(10小题,每小题5分,共计50分)
1、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
2、(1)计算:;
(2)求式中的x:(x+4)2=81.
3、已知a,b,c,d是有理数,对于任意,我们规定:.
例如:.
根据上述规定解决下列问题:
(1)_________;
(2)若,求的值;
(3)已知,其中是小于10的正整数,若x是整数,求的值.
4、计算:.
5、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
6、计算:(1);
(2).
7、计算
(1);
(2)
8、计算:
(1);
(2).
9、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.
10、已知的平方根是,的立方根是2,是的整数部分,求的算术平方根.
-参考答案-
一、单选题
1、A
【分析】
根据算术平方根的定义即可完成.
【详解】
∵
∴的算术平方根是
即
故选:A
【点睛】
本题考查了算术平方根的计算,掌握算术平方根的定义是关键.
2、C
【分析】
根据25<29<36估算出的大小,然后可求得的范围.
【详解】
解:∵25<29<36,
∴<<,即5<<6.
3、B
【分析】
根据实数的大小比较法则即可得.
【详解】
解:,
,
,
则,
故选:B.
【点睛】
本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.
4、C
【分析】
根据平方根和算术平方根的定义解答即可.
【详解】
解:可以表示0.2的负的平方根,
故选:C.
【点睛】
此题考查了算术平方根和平方根.解题的关键是掌握平方根和算术平方根的定义,要注意:平方根和算术平方根的区别:一个正数的平方根有两个,互为相反数.
5、D
【分析】
由于表示4的算术平方根,由此即可得到结果.
【详解】
解:∵4的算术平方根为2,
∴的值为2.
故选D.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.
6、D
【分析】
根据实数的性质依次判断即可.
【详解】
解:A.∵无限不循环小数才是无理数.∴A错误.
B.∵数轴上的点也可以表示无理数.∴B错误.
C.∵0的绝对值是0,既不是正数也不是负数.∴C错误.
D.∵和为0的两个数互为相反数.∴D正确.
故选:D.
【点睛】
本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.
7、C
【分析】
根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故.
【详解】
∵
∴
∴
故选:C.
【点睛】
本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.
8、C
【分析】
根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0.
【详解】
解:平方根是本身的数有0,立方根是本身的数有1,-1,0;
∴平方根和立方根都是本身的数是0.
故选C.
【点睛】
本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b≥0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根.
9、B
【分析】
直接根据相反数的定义(只有符号不同的两个数互为相反数)进行求解即可.
【详解】
解:的相反数是;
故选:B.
【点睛】
本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.
10、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
二、填空题
1、2
【分析】
根据无理数的定义(无理数是指无限不循环小数)判断即可.
【详解】
解:无理数有,0.1010010001…(每两个1之间的0依次加1),共有2个,
故答案为:2.
【点睛】
本题考查了无理数,无理数是无限不循环小数,熟练掌握无理数的概念是本题的关键点.
2、
【分析】
根据平方的运算,可得,即可求解
【详解】
解:∵,
的平方根是,
故答案为:
【点睛】
本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.
3、2b
【分析】
由题意根据绝对值的意义即非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数进行分析计算即可解答.
【详解】
解:由数轴可得:a-b<0,b+a<0,
∴|a-b|-|b+a|=b-a+b+a=2b.
故答案为:2b.
【点睛】
本题主要考查实数与数轴之间的对应关系及绝对值的化简,注意掌握根据点在数轴上的位置来正确判断出代数式值的符号.
4、1
【分析】
根据绝对值与二次根式的非负性求出a,b的值,故可求解.
【详解】
解:∵
∴a-2=0,b-4=0
∴a=2,b=4
∴=
故答案为:1.
【点睛】
此题主要考查代数式求值,解题的关键是熟知非负性的运用.
5、121520
【分析】
观察规律可知,算出3*4*5即可.
【详解】
①,
②,
③,
.
故答案为:121520.
【点睛】
本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键.
三、解答题
1、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
2、(1);(2)或
【分析】
(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;
(2)根据平方根的意义,计算出x的值.
【详解】
解:(1)原式
;
(2)由平方根的意义得:
或
∴或.
【点睛】
本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.
3、
(1)-5
(2)
(3)k=1,4,7.
【分析】
(1)根据规定代入数据求解即可;
(2)根据规定代入整式,利用方程的思想求解即可;
(3)根据规定代入整式,利用方程的思想,用含的式子表示x,利用是小于10的正整数,x是整数,就可求出的值.
(1)
解:;
(2)
解:
即:
(3)
解:,
即:
因为是小于10的正整数且x是整数,
所以k=1时,x=3;k=4时,x=4;k=7时,x=5.
所以k=1,4,7.
【点睛】
本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.
4、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
5、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
6、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
7、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
8、(1)1;(2)
【分析】
(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;
(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=,
=,
=.
【点睛】
本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键.
9、5
【分析】
根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.
【详解】
解:∵x-2的平方根是±2,
∴x-2=4,
解得:x=6,
∵x+2y+7的立方根是3,
∴6+2×y+7=27,
解得:y=7,
∴3x+y=25,
∴3x+y的算术平方根是5.
【点睛】
本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键.
10、
【分析】
直接利用平方根以及立方根和估算无理数的大小得出a,b,c的值进而得出答案.
【详解】
解:∵2a-1的平方根是±3,
∴2a-1=9,
解得:a=5,
∵3a+b-9的立方根是2,
∴15+b-9=8,
解得:b=2,
∵4<<5,c是的整数部分,
∴c=4,
∴a+2b+c=5+4+4=13,
∴a+2b+c的算术平方根为
【点睛】
此题主要考查了平方根以及立方根和估算无理数的大小,正确得出a,b,c的值是解题关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各式中,化简结果正确的是,若关于x的方程,化简计算﹣的结果是,关于的叙述,错误的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共20页。试卷主要包含了已知a=,b=-|-|,c=,实数在哪两个连续整数之间,9的平方根是,下列各数是无理数的是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共21页。试卷主要包含了下列四个数中,最小的数是,下列说法中正确的有,下列实数比较大小正确的是,实数在哪两个连续整数之间,下列整数中,与-1最接近的是等内容,欢迎下载使用。