搜索
    上传资料 赚现金
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题攻克练习题(精选)
    立即下载
    加入资料篮
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题攻克练习题(精选)01
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题攻克练习题(精选)02
    2022年最新强化训练沪教版(上海)七年级数学第二学期第十二章实数专题攻克练习题(精选)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试巩固练习,共21页。试卷主要包含了下列四个数中,最小的数是,下列说法中正确的有,下列实数比较大小正确的是,实数在哪两个连续整数之间,下列整数中,与-1最接近的是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数专题攻克

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、估算的值是在(    )之间

    A.5和6 B.6和7 C.7和8 D.8和9

    2、有一个数值转换器,原理如下:当输入的x为64时,输出的y是(   

    A. B.2 C. D.

    3、若,则整数a的值不可能为(   

    A.2 B.3 C.4 D.5

    4、下列四个数中,最小的数是(   

    A.﹣3 B.﹣ C.0 D.﹣π

    5、下列说法中正确的有(  )

    ①±2都是8的立方根

    x

    的平方根是3  

    ④﹣=2.

    A.1个 B.2个 C.3个 D.4个

    6、下列实数比较大小正确的是(  

    A. B. C. D.

    7、实数在哪两个连续整数之间(   

    A.3与4 B.4与5 C.5与6 D.12与13

    8、在, 0, , 0.010010001……, , -0.333…,   3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有(     

    A.2个 B.3个 C.4个 D.5个

    9、下列整数中,与-1最接近的是(   

    A.2 B.3 C.4 D.5

    10、下列说法不正确的是(   

    A.0的平方根是0 B.一个负数的立方根是一个负数

    C.﹣8的立方根是﹣2 D.8的算术平方根是2

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若,则_________.

    2、已知,则|x﹣3|+|x﹣1|=___.

    3、计算:__________.

    4、若规定“※”的运算法则为:,例如:  =_________.

    5、已知(xy+3)2+=0,则(x+y2021=___.

    三、解答题(10小题,每小题5分,共计50分)

    1、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为

    (1)图1中阴影正方形的边长为      ;点P表示的实数为      

    (2)如图2,在4×4方格中阴影正方形的边长为a.

    ①写出边长a的值.

    ②请仿照(1)中的作图在数轴上表示实数﹣a+1.

    2、(1)计算:

    (2)求下列各式中的x

    ②(x+3)3=﹣27.

    3、计算:

    4、(1)计算:

    (2)计算:(﹣2x22+x3xx5÷x

    (3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.

    5、求方程中x 的值(x﹣1)2 ﹣16 = 0

    6、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.

    (1)对10进行1次操作后变为_______,对200进行3次作后变为_______;

    (2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;

    (3)若正整数m进行3次操作后变为1,求m的最大值.

    7、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

    8、(1)计算:(﹣)×(﹣1)2021+

    (2)求x的值:(3x+2)3﹣1=

    9、计算

    10、已知ab互为相反数,cd互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故

    【详解】

    故选:C.

    【点睛】

    本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.

    2、C

    【分析】

    直接利用立方根以及算术平方根、无理数分析得出答案.

    【详解】

    解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是

    故选:C.

    【点睛】

    本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.

    3、D

    【分析】

    首先确定的范围,然后求出整式a可能的值,判断求解即可.

    【详解】

    解:∵,即,即

    又∵

    ∴整数a可能的值为:2,3,4,

    ∴整数a的值不可能为5,

    故选:D.

    【点睛】

    此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.

    4、D

    【分析】

    正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.

    【详解】

    解:∵

    ∴最小的数是

    故选D.

    【点睛】

    此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.

    5、B

    【分析】

    根据平方根和立方根的定义进行判断即可.

    【详解】

    解:①2是8的立方根,-2不是8的立方根,原说法错误;

    =x,正确;

    ,9的平方根是3,原说法错误;

    ④﹣=2,正确;

    综上,正确的有②④共2个,

    故选:B.

    【点睛】

    本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.

    6、D

    【分析】

    根据有理数比较大小的法则对各选项进行比较即可.

    【详解】

    解:A、1>-4,故本选项错误;

    B、-1000<-0.001,故本选项错误;

    C,故本选项错误;

    D,故本选项正确;

    故选:D.

    【点睛】

    本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.

    7、B

    【分析】

    估算即可得到结果.

    【详解】

    解:

    故选:B.

    【点睛】

    本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.

    8、C

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:=1,=2,,3,

    ∴无理数有,2.010101…(相邻两个1之间有1个0)共4个.

    故选:C.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    9、A

    【分析】

    先由无理数估算,得到,且接近3,即可得到答案.

    【详解】

    解:由题意,

    ,且接近3,

    最接近的是整数2;

    故选:A.

    【点睛】

    本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.

    10、D

    【分析】

    直接利用算术平方根、平方根、立方根的定义分析得出答案.

    【详解】

    解:A、0的平方根是0,原说法正确,故此选项不符合题意;

    B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;

    C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;

    D、8的算术平方根是2,原说法不正确,故此选项符合题意;

    故选:D.

    【点睛】

    此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.

    二、填空题

    1、

    【分析】

    根据算术平方根的非负性及平方的非负性求出xy的值,代入计算即可.

    【详解】

    解:∵,且

    x-2=0,y+3=0,

    x=2,y=-3,

    故答案为:-6.

    【点睛】

    此题考查了有理数的乘法计算,正确掌握算术平方根的非负性及平方的非负性求出xy的值是解题的关键.

    2、2

    【分析】

    得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.

    【详解】

    解:∵,1<<2,2<<3,

    x-3<0,x-1>0,

    ∴|x﹣3|+|x-1|

    =3-x+(x-1)

    =3-x+x-1

    =2.

    故答案为:2.

    【点睛】

    本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.

    3、2

    【分析】

    直接利用立方根、绝对值化简得出答案.

    【详解】

    解:原式

    故答案为:2.

    【点睛】

    本题主要考查了实数的运算,解题的关键是正确化简.

    4、-2

    【分析】

    依据定义的运算法则列式计算即可.

    【详解】

    ==-2

    故答案为:-2.

    【点睛】

    本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.

    5、1

    【分析】

    由(xy+3)2+=0,可得方程组,再解方程组,代入代数式计算即可得到答案.

    【详解】

    解:xy+3)2+=0,

    解得:

    故答案为:1

    【点睛】

    本题考查的是偶次方与算术平方根的非负性,掌握“若”是解题的关键.

    三、解答题

    1、(1),1+;(2)①;②见解析

    【分析】

    (1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;

    (2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;

    ②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为

    【详解】

    解:(1)正方形ABCD的面积为:

    正方形ABCD的边长为:

    由题意得:点表示的实数为:

    故答案为:

    (2)①阴影部分正方形面积为:

    求其算术平方根可得:

    ②如图所示:

    表示的数即为

    【点睛】

    本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.

    2、(1);(2)①;②

    【分析】

    (1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;

    (2)①对等式进行开平方运算,再把x的系数转化为1即可;

    ②对等式进行开立方运算,再移项即可.

    【详解】

    解:(1)

    =2(﹣2)﹣3

    =﹣3

    (2)①

    ±3

    x=±6;

    ②(x+3)3=﹣27

    x+3=﹣3

    x=﹣6.

    【点睛】

    本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.

    3、7

    【分析】

    根据实数的性质化简即可求解.

    【详解】

    解:原式

    【点睛】

    此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.

    4、(1)8﹣;(2)4x4;(3)a2+2a+47,46

    【分析】

    (1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;

    (2)先算乘方,再算乘除,然后合并同类项求解即可;

    (3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.

    【详解】

    解:(1)原式=9﹣2﹣(﹣1)

    =7﹣+1

    =8﹣

    (2)原式=4x4+x4x4

    =4x4

    (3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)

    =2a2+8a+8﹣4a2+36+3a2﹣6a+3

    a2+2a+47,

    a=﹣1时,

    原式=(﹣1)2+2×(﹣1)+47

    =1﹣2+47

    =46.

    【点睛】

    此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.

    5、

    【分析】

    根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)

    【详解】

    解:(x﹣1)2 ﹣16 = 0

    解得

    【点睛】

    本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键.

    6、(1)3;1;(2);(3)的最大值为255

    【详解】

    解:(1)∵

    ∴对10进行1次操作后变为3;

    同理可得

    同理可得

    同理可得

    ∴对200进行3次作后变为1,

    故答案为:3;1;

    (2)设m进行第一次操作后的数为x

    ∵要经过两次操作.

    故答案为:

    (3)设m经过第一次操作后的数为n,经过第二次操作后的数为x

    ∵要经过3次操作,故

    是整数.

    的最大值为255.

    【点睛】

    本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.

    7、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

    8、(1);(2)

    【分析】

    (1)先计算乘方、立方根和算术平方根,再计算加减法即可得;

    (2)利用立方根解方程即可得.

    【详解】

    解:(1)原式

    (2)

    【点睛】

    本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.

    9、

    【分析】

    根据立方根,算术平方根,绝对值的计算法则进行求解即可.

    【详解】

    解:

    【点睛】

    本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.

    10、-1

    【分析】

    由题意可知,将值代入即可.

    【详解】

    解:由题意得:

    解得

    【点睛】

    本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共19页。试卷主要包含了64的立方根为.,下列语句正确的是,若 ,则,下列说法等内容,欢迎下载使用。

    初中第十二章 实数综合与测试课后复习题: 这是一份初中第十二章 实数综合与测试课后复习题,共19页。试卷主要包含了a为有理数,定义运算符号▽,在下列四个实数中,最大的数是,下列运算正确的是,观察下列算式等内容,欢迎下载使用。

    七年级下册第十二章 实数综合与测试同步测试题: 这是一份七年级下册第十二章 实数综合与测试同步测试题,共20页。试卷主要包含了下列各数中,比小的数是,如果a,9的平方根是,的算术平方根是,0.64的平方根是,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map