搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专题练习练习题(名师精选)

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专题练习练习题(名师精选)第1页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专题练习练习题(名师精选)第2页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专题练习练习题(名师精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课后练习题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中不是中心对称图形的是( )
    A. B. C. D.
    2、下列图形中,既是中心对称图形也是轴对称图形的是( )
    A.圆 B.平行四边形 C.直角三角形 D.等边三角形
    3、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    4、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5 B.4 C.3 D.2
    5、平面直角坐标系内与点P关于原点对称的点的坐标是( )
    A. B. C. D.
    6、已知中,,,CD是斜边AB上的中线,则的度数是( )

    A. B. C. D.
    7、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为(  )

    A.30° B.36° C.37.5° D.45°
    8、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A. B.
    C. D.
    9、下列图形中,是中心对称图形的是( )
    A. B.
    C. D.
    10、下列说法中,正确的是( )
    A.若,,则
    B.90′=1.5°
    C.过六边形的每一个顶点有4条对角线
    D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.

    2、若点关于原点的对称点是,则______.
    3、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.
    4、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.

    5、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.
    三、解答题(5小题,每小题10分,共计50分)
    1、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.

    结合图①,写出完整的证明过程
    (应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
    (拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .

    2、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.
    3、如图,四边形ABCD是平行四边形,,且分别交对角线于点E、F,连接ED、BF.

    (1)求证:四边形BEDF是平行四边形;
    (2)若AE=EF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.
    4、综合与实践
    (1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为    .

    (2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
    (3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为    .
    5、阅读材料,回答下列问题:
    (材料提出)
    “八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.
    (探索研究)
    探索一:如图1,在八字形中,探索∠A、∠B、∠C、∠D之间的数量关系为 ;
    探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为 ;
    探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为 .
    (模型应用)
    应用一:如图4,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P.则∠A= (用含有α和β的代数式表示),∠P= .(用含有α和β的代数式表示)
    应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P= .(用含有α和β的代数式表示)
    (拓展延伸)
    拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 .(用x、y表示∠P)
    拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论 .



    -参考答案-
    一、单选题
    1、B
    【分析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、是中心对称图形,故本选项不合题意;
    B、不是中心对称图形,故本选项符合题意;
    C、是中心对称图形,故本选项不合题意;
    D、是中心对称图形,故本选项不合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    2、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A.圆既是中心对称图形也是轴对称图形,故此选项符合题意;
    B.平行四边形是中心对称图形,不是轴对称图形,故此选项不合题意;
    C.直角三角形既不是中心对称图形,也不一定是轴对称图形,不符合题意;
    D.等边三角形不是中心对称图形,是轴对称图形,故此选项不合题意.
    故选:A.
    【点睛】
    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    3、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    4、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    5、C
    【分析】
    根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
    【详解】
    解:由题意,得
    点P(-2,3)关于原点对称的点的坐标是(2,-3),
    故选:C.
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    6、B
    【分析】
    由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.
    【详解】
    解:∵∠ACB=90°,∠B=54°,
    ∴∠A=36°,
    ∵CD是斜边AB上的中线,
    ∴CD=AD,
    ∴∠ACD=∠A=36°.
    故选:B.
    【点睛】
    本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.
    7、C
    【分析】
    根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.
    【详解】
    ∵矩形ABCD


    ∵OB=EB,


    ∵点O为对角线BD的中点,

    和中



    ∵EG⊥FG,即



    故选:C.
    【点睛】
    本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.
    8、B
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
    9、B
    【分析】
    根据中心对称图形的定义求解即可.
    【详解】
    解:A、不是中心对称图形,不符合题意;
    B、是中心对称图形,符合题意;
    C、不是中心对称图形,不符合题意;
    D、不是中心对称图形,不符合题意.
    故选:B.
    【点睛】
    此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
    10、B
    【分析】
    由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
    【详解】
    解:若,则故A不符合题意;
    90′=故B符合题意;
    过六边形的每一个顶点有3条对角线,故C不符合题意;
    疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
    故选:B.
    【点睛】
    本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
    二、填空题
    1、或.
    【分析】
    根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
    【详解】
    解:∵以单位长度为边长画一个正方形,
    ∴正方形面积为1,
    ∴,
    ∴AB=,
    ∵点A在1的位置,
    ∴圆与数轴的交点对应的数为或.
    故答案为或.
    【点睛】
    本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
    2、
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:由关于坐标原点的对称点为,得,

    解得:
    故答案为:.
    【点睛】
    本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    3、1080
    【分析】
    利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
    【详解】
    解:∵正多边形的每一个外角都等于,
    ∴正多边形的边数为360°÷45°=8,
    所有这个正多边形的内角和为(8-2)×180°=1080°.
    故答案为:1080.
    【点睛】
    本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.
    4、10
    【分析】
    根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.
    【详解】
    ∵四边形ABCD是正方形,
    ∴,,
    ∴.
    根据题意可知:,,
    ∴,,
    ∴在和中,,
    ∴,
    ∴.
    ∵在中,,
    ∴正方形ABCD的面积是10.
    故答案为:10.
    【点睛】
    本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.
    5、6
    【分析】
    根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据题意,得
    (n﹣2)•180=360×2,
    解得:n=6.
    故这个多边形的边数为6.
    故答案为:6.
    【点睛】
    本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.
    三、解答题
    1、【教材呈现】见解析;【应用】 ;【拓展】
    【分析】
    (教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
    (应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
    (拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
    【详解】
    解:(教材呈现)∵四边形ABCD是矩形,
    ∴AECF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分AC,
    ∴AO=CO,∠AOE=∠COF=90°,
    ∴△AOE≌△COF(ASA)
    ∴OE=OF,
    又∵AO=CO,
    ∴四边形AFCE是平行四边形,
    ∵EF⊥AC,
    ∴平行四边形AFCE是菱形;
    (应用)如图,连接AC、EC
    由(教材呈现)可得平行四边形AFCE是菱形,

    ∴AF=CF,∠AFE=∠EFC,
    ∵AF2=BF2+AB2,
    ∴(5−BF)2=BF2+16,
    ∴BF=,
    ∴AF=CF=,
    ∵AB⊥BC,
    ∴△ABC是直角三角形
    ∴AC=
    ∵S四边形AFCE=,

    ∴EF=,
    故答案为:.
    (拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,

    ∵四边形ABCD是平行四边形,∠C=45°,
    ∴∠ABC=135°,
    ∴∠ABN=45°,
    ∵AN⊥BC,
    ∴∠ABN=∠BAN=45°,
    ∴△ANB是等腰直角三角形
    ∵AN2+BN2=AB2,AN=BN
    ∴AN=BN=3,NC=6+3=9
    ∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
    ∴AF=CF,∠AFE=∠EFC,
    ∵ADBC,
    ∴∠AEF=∠EFC=∠AFE,
    ∴AE=AF,
    ∵AF2=AN2+NF2,
    ∴AF2=9+(9−AF)2,
    ∴AF=5,
    ∴AE=AF=5,
    ∵ANMF,ADBC,
    ∴四边形ANFM是平行四边形,
    ∵AN⊥BC,
    ∴四边形ANFM是矩形,
    ∴AN=MF=3,
    ∴AM==4,
    ∴ME=AE−AM=1,
    ∴EF==,
    ∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
    ∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
    故答案为:.
    【点睛】
    本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
    2、这个多边形的边数是6
    【分析】
    多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.
    【详解】
    解:设这个多边形的边数为n,
    由题意得:(n-2)×180°=2×360°,
    解得n=6,
    ∴这个多边形的边数是6.
    【点睛】
    此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.
    3、(1)证明见解析;(2)
    【分析】
    (1)先证明再证明可得从而有 于是可得结论;
    (2)先证明再证明,从而可得结论.
    【详解】
    证明:(1) 四边形ABCD是平行四边形,



    ∴∠BEF=∠DFE,




    四边形BEDF是平行四边形.
    (2)由(1)得:



    四边形BEDF是平行四边形, 四边形ABCD是平行四边形,

    ∴S△ADF=S△DEC=S△ABF=S△BEC=13S▱ABCD.
    【点睛】
    本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.
    4、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析
    【分析】
    (1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;
    (3)在NC上截取C M'=AM,连接B M',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CB M',从而得到AM=C M',BM=B M',∠ABM=∠CB M',进而得到∠MA M'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.
    【详解】
    解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC ,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=45°,
    ∴∠ABM+∠CBN=45°,
    ∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,
    即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (2)MN=AM+CN;理由如下:
    如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,

    ∵∠A+∠C=180°,
    ∴∠BCM'+∠BCD=180°,
    ∴点M'、C、N三点共线,
    ∵∠MBN=∠ABC,
    ∴∠ABM+∠CBN=∠ABC=∠MBN,
    ∴∠CBN+∠M'BC =∠MBN,即∠M'BN=∠MBN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N= M'C+CN,
    ∴MN= M'C+CN=AM+CN;
    (3)MN=CN-AM,理由如下:
    如图,在NC上截取C M'=AM,连接B M',

    ∵在四边形ABCD中,∠ABC+∠ADC=180°,
    ∴∠C+∠BAD=180°,
    ∵∠BAM+∠BAD=180°,
    ∴∠BAM=∠C,
    ∵AB=BC,
    ∴△ABM≌△CB M',
    ∴AM=C M',BM=B M',∠ABM=∠CB M',
    ∴∠MA M'=∠ABC,
    ∵∠MBN=∠ABC,
    ∴∠MBN=∠MA M'=∠M'BN,
    ∵BN=BN,
    ∴△NBM≌△NBM',
    ∴MN= M'N,
    ∵M'N=CN-C M',
    ∴MN=CN-AM.
    故答案是:MN=CN-AM.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.
    5、∠A+∠B=∠C+∠D; 25°;∠P=;α+β﹣180°,∠P=; ;∠P=;2∠P﹣∠B﹣∠D=180°.
    【分析】
    探索一:根据三角形的内角和定理,结合对顶角的性质可求解;
    探索二:根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;
    探索三:运用探索一和探索二的结论即可求得答案;
    应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得∠A=α+β﹣180°,再运用角平分线定义及三角形外角性质即可求得答案;
    应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;
    拓展一:运用探索一的结论可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,再结合已知条件即可求得答案;
    拓展二:运用探索一的结论及角平分线定义即可求得答案.
    【详解】
    解:探索一:如图1,

    ∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,
    ∴∠A+∠B=∠C+∠D,
    故答案为∠A+∠B=∠C+∠D;
    探索二:如图2,

    ∵AP、CP分别平分∠BAD、∠BCD,
    ∴∠1=∠2,∠3=∠4,
    由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,
    ∴∠B﹣∠P=∠P﹣∠D,
    即2∠P=∠B+∠D,
    ∵∠B=36°,∠D=14°,
    ∴∠P=25°,
    故答案为25°;
    探索三:由①∠D+2∠1=∠B+2∠3,

    由②2∠B+2∠3=2∠P+2∠1,
    ①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1
    ∠D+2∠B=2∠P+∠B.
    ∴∠P=.
    故答案为:∠P=.
    应用一:如图4,

    延长BM、CN,交于点A,
    ∵∠M=α,∠N=β,α+β>180°,
    ∴∠AMN=180°﹣α,∠ANM=180°﹣β,
    ∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;
    ∵BP、CP分别平分∠ABC、∠ACB,
    ∴∠PBC=∠ABC,∠PCD=∠ACD,
    ∵∠PCD=∠P+∠PBC,
    ∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,
    故答案为:α+β﹣180°,;
    应用二:如图5,

    延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,
    ∵∠M=α,∠N=β,α+β<180°,
    ∴∠A=180°﹣α﹣β,
    ∵BP平分∠MBC,CP平分∠NCR,
    ∴BP平分∠ABT,CP平分∠ACB,
    由应用一得:∠P=∠A=,
    故答案为:;
    拓展一:如图6,

    由探索一可得:
    ∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,
    ∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,
    ∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,
    ∠PAB=∠CAB,∠PDB=∠CDB,
    ∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,
    ∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,
    ∴∠P=,
    故答案为:∠P=;
    拓展二:如图7,

    ∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,
    ∴∠PAD=∠BAD,∠PCD=90°+∠BCD,
    由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,
    ②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,
    ③﹣①,得:2∠P﹣∠B=∠D+180°,
    ∴2∠P﹣∠B﹣∠D=180°,
    故答案为:2∠P﹣∠B﹣∠D=180°.
    【点睛】
    本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可.

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共25页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后复习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后复习题,共22页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试同步测试题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共32页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map