2021学年第十五章 四边形综合与测试单元测试练习题
展开
这是一份2021学年第十五章 四边形综合与测试单元测试练习题,共28页。
京改版八年级数学下册第十五章四边形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
2、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作⊥DE交DG的延长线于点H,连接,那么的值为( )
A.1 B. C. D.2
3、下列四个图案中,是中心对称图形的是( )
A. B.
C. D.
4、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )
A.2 B.2或1.5 C.2.5 D.2.5或2
5、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
6、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )
A.A,B,C都不在 B.只有B
C.只有A,C D.A,B,C
7、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
8、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
9、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
A. B. C. D.
10、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.14或15或16 B.15或16或17 C.15或16 D.16或17
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系内,点A(a,﹣3)与点B(1,b)关于原点对称,则a+b的值_________.
2、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.
3、一个多边形的内角和为1080°,则它是______边形.
4、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .
5、若正边形的每个内角都等于120°,则这个正边形的边数为________.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
(1)若,求线段AC的长;
(2)求证:.
2、阅读探究
小明遇到这样一个问题:在中,已知,,的长分别为,,,求的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,
(1)图1中的面积为________.
实践应用
参考小明解决问题的方法,回答下列问题:
(2)图2是一个的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为,,的格点.
②的面积为________(写出计算过程).
拓展延伸
(3)如图3,已知,以,为边向外作正方形和正方形,连接.若,,,则六边形的面积为________(在图4中构图并填空).
3、如图,△AOB是等腰直角三角形.
(1)若A(﹣4,1),求点B的坐标;
(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
4、如图,在正方形ABCD中,DF=AE,AE与DF相交于点O.
(1)求证:△DAF≌△ABE;
(2)求∠AOD的度数.
5、如图是两张10×10的方格纸,方格纸中的每个小正方形的边长均为1.请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):
(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形.
(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形.
-参考答案-
一、单选题
1、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
2、B
【分析】
作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.
【详解】
解:如图,在线段AD上截取AM,使AM=AE,
,
∵AD=AB,
∴DM=BE,
∵点A关于直线DE的对称点为F,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
∵,
∴Rt△DFG≌Rt△DCG(HL),
∴∠3=∠4,
∵∠ADC=90°,
∴∠1+∠2+∠3+∠4=90°,
∴2∠2+2∠3=90°,
∴∠2+∠3=45°,
即∠EDG=45°,
∵EH⊥DE,
∴∠DEH=90°,△DEH是等腰直角三角形,
∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,
∴∠1=∠BEH,
在△DME和△EBH中,
∵,
∴△DME≌△EBH(SAS),
∴EM=BH,
Rt△AEM中,∠A=90°,AM=AE,
∴,
∴ ,即=.
故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.
3、A
【分析】
中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
【详解】
解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
故选:A.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
4、D
【分析】
根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
【详解】
解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
∵AB=BC=10厘米,AE=4厘米,
∴BE=CP=6厘米,
∴BP=10-6=4厘米,
∴运动时间t=4÷2=2(秒);
当,即点Q的运动速度与点P的运动速度不相等,
∴BP≠CQ,
∵∠B=∠C=90°,
∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
∴点P,Q运动的时间t=(秒).
综上t的值为2.5或2.
故选:D.
【点睛】
本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
5、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
6、D
【分析】
根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.
【详解】
解:如图所示:连接BD,
∵,,,
∴,
∴为直角三角形,
∵D为AC中点,
∴,
∵覆盖半径为300 ,
∴A、B、C三个点都被覆盖,
故选:D.
【点睛】
题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.
7、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
8、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
9、C
【分析】
根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
【详解】
解:∵点P是∠AOB平分线上的一点,,
∴,
∵PD⊥OA,M是OP的中点,
∴,
∴
∵点C是OB上一个动点
∴当时,PC的值最小,
∵OP平分∠AOB,PD⊥OA,
∴最小值,
故选C.
【点睛】
本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
10、A
【分析】
由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
【详解】
解:设新多边形的边数为n,
则(n-2)•180°=2340°,
解得:n=15,
①若截去一个角后边数增加1,则原多边形边数为14,
②若截去一个角后边数不变,则原多边形边数为15,
③若截去一个角后边数减少1,则原多边形边数为16,
所以多边形的边数可以为14,15或16.
故选:A.
【点睛】
本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
二、填空题
1、2
【分析】
根据点关于原点对称的坐标特点即可完成.
【详解】
∵点A(a,﹣3)与点B(1,b)关于原点对称
∴
∴
故答案为:2
【点睛】
本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.
2、6
【分析】
根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=360×2,
解得:n=6.
故这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.
3、八
【分析】
根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).
【详解】
解:设该多边形的边数为n,
根据题意,得,
解得,
∴这个多边形为八边形,
故答案为:八.
【点睛】
此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
4、5cm或5.2cm
【分析】
当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,
【详解】
解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;
当点P在CD上,如图,
∵PB=AM
∵四边形ABCD为正方形,
∴AB=BC=AD=CD=8,
在Rt△ABM和Rt△BCP中,
,
∴Rt△ABM≌Rt△BCP(HL),
∴∠MAB=∠PBC,
∵∠MAB+∠AMB=90°,
∴∠PBC+∠AMB=90°,
∴∠BNM=180°-∠PBC-∠AMB=90°,
∴BP⊥AM,
∵MC=2cm,
∴BM=BC-MC=8-2=6cm,
∴AM=,
∴,
∴,
∴PN=BP-BN=AM-BN=10-4.8=5.2cm,
当点P在AD上,如图,
在Rt△ABM和Rt△BAP中,
,
∴Rt△ABM≌Rt△BAP(HL),
∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,
∴AN=BN,
∵AD∥BC,
∴∠PAN=∠NMB=∠APN,
∴AN=PN=BN=MN,
∵AM=BP=10cm,
∴PN=cm,
∴PN的长为5cm或5.2cm.
故答案为5cm或5.2cm.
【点睛】
本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.
5、6
【分析】
多边形的内角和可以表示成,因为所给多边形的每个内角均相等,故又可表示成,列方程可求解.
【详解】
解:设所求正边形边数为,
则,
解得,
故答案是:6.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.
三、解答题
1、(1);(2)见解析
【分析】
(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
【详解】
(1)
,
;
(2)连接DE
,
,
,,
,
,
.
【点睛】
本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
2、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.
【分析】
(1)根据网格可直接用割补法求解三角形的面积;
(2)①利用勾股定理画出三边长分别为、、,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;
(3)根据题意在网格中画出图形,然后在网格中作出,,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.
【详解】
解:(1)△ABC的面积为:,
故答案为:;
(2)①作图如下(答案不唯一):
②的面积为:,
故答案为:8;
(3)在网格中作出,,
在与中,
,
∴,
∴,
,
六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积
,
故答案为:31.
【点睛】
本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键.
3、(1)(1,4);(2)45°;(3)见解析
【分析】
(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
【详解】
解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
∴∠AEO=∠OFB=90°,
∴∠AOE+∠OAE=90°,
又∵∠AOB=90°,
∴∠AOE+∠BOF=90°,
∴∠OAE=∠BOF,
∵AO=OB,
∴△OAE≌△BOF(AAS),
∴OF=AE,BF=OE,
∵点A的坐标为(-4,1),
∴OF=AE=1,BF=OE=4,
∴点B的坐标为(1,4);
(2)如图所示,延长MP与AN交于H,
∵AH⊥y轴,BM⊥y轴,
∴BM∥AN,
∴∠MBP=∠HAP,∠AHP=∠BMP,
∵点P是AB的中点,
∴AP=BP,
∴△APH≌△BPM(AAS),
∴AH=BM,
∵A点坐标为(-4,1),B点坐标为(1,4),
∴AN=4,OM=4,BM=1,ON=1,
∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
∴HN=MN,
∴∠NHM=∠NMH=45°,即∠PMO=45°;
(3)如图所示,连接OP,AM,取BM中点G,连接GP,
∴GP是△ABM的中位线,
∴AM∥GP,
∵Q是ON的中点,G是BM的中点,ON=BM=1,
∴,
∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
∴,∠OAB=∠OBA=45°,∠OPB=90°
∴∠PAO=∠POA=45°,
∴∠POB=45°,
∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
∴∠NAO=∠BON,
∵∠OAB=∠POB=45°,
∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
由(2)得∠GBP=∠BAN,
∴∠GBP=∠QOP,
∴△PQO≌△PGB(SAS),
∴∠OPQ=∠BPG,
∵∠OPQ+∠BPQ=90°,
∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
∴PQ⊥PG,
∴PG⊥AM;
【点睛】
本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
4、(1)见解析;(2)90°
【分析】
(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明Rt△DAF≌Rt△ABE即可得出结论;
(2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴∠DAB=∠ABC=90°,AD=AB,
在Rt△DAF和Rt△ABE中,
,
∴Rt△DAF≌Rt△ABE(HL),即△DAF≌△ABE.
(2)解:由(1)知,△DAF≌△ABE,
∴∠ADF=∠BAE,
∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,
∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.
【点睛】
本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出Rt△DAF≌Rt△ABE是解本题的关键.
5、(1)画图见解析;(2)画图见解析
【分析】
(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;
(2)利用矩形的性质结合其周长得出答案,答案不唯一.
【详解】
解:(1)如图1所示:
(2)如图2所示:
答案不唯一.
【点睛】
本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试课后练习题,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后复习题,共22页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。