北京课改版八年级下册第十五章 四边形综合与测试课时训练
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共33页。
京改版八年级数学下册第十五章四边形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为( )
A.40° B.45° C.50° D.55°
2、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
3、下列四个图形中,为中心对称图形的是( )
A. B.
C. D.
4、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A. B. C. D.
5、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
A.5 B.4 C.3 D.2
6、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
7、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )
A.25° B.20° C.15° D.10°
8、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有( )
A.①②③ B.②③④ C.①②④ D.①④
9、下列图形中,既是轴对称图形又是中心对称图形的是( ).
A. B.
C. D.
10、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.
2、如图,在数轴上,以单位长度为边长画一个正方形,点A对应的数是1,以点A为圆心,正方形对角线AB为半径画圆,圆与数轴的交点对应的数是 _____.
3、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.
4、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.
5、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.
(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;
(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.
2、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,∠BAC=90°,
(1)求过B,C两点的直线的解析式.
(2)作正方形ABDC,求点D的坐标.
3、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.
(1)求证:四边形ABEC是平行四边形;
(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.
4、(3)点P为AC上一动点,则PE+PF最小值为.
5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.
结合图①,写出完整的证明过程
(应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
(拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .
-参考答案-
一、单选题
1、A
【分析】
可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
【详解】
解:设∠EAD′=α,∠FAB′=β,
根据折叠性质可知:
∠DAF=∠D′AF,∠BAE=∠B′AE,
∵∠B′AD′=10°,
∴∠DAF=10°+β,
∠BAE=10°+α,
∵四边形ABCD是矩形
∴∠DAB=90°,
∴10°+β+β+10°+10°+α+α=90°,
∴α+β=30°,
∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
=10°+α+β,
=10°+30°,
=40°.
则∠EAF的度数为40°.
故选:A.
【点睛】
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
2、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
3、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
【详解】
解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
故选:B.
【点睛】
此题主要考查了中心对称图形定义,关键是找出对称中心.
4、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
5、A
【分析】
利用直角三角形斜边的中线的性质可得答案.
【详解】
解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.
【点睛】
此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
6、A
【分析】
多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.
【详解】
解:多边形的外角和是360度,
又多边形的外角和是内角和的2倍,
多边形的内角和是180度,
这个多边形是三角形.
故选:A.
【点睛】
考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.
7、D
【分析】
根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,
∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.
【点睛】
本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
8、C
【分析】
利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.
【详解】
∵CM、BN分别是高
∴△CMB、△BNC均是直角三角形
∵点P是BC的中点
∴PM、PN分别是两个直角三角形斜边BC上的中线
∴
故①正确
∵∠BAC=60゜
∴∠ABN=∠ACM=90゜−∠BAC=30゜
∴AB=2AN,AC=2AM
∴AN:AB=AM:AC=1:2
即②正确
在Rt△ABN中,由勾股定理得:
故③错误
当∠ABC=60゜时,△ABC是等边三角形
∵CM⊥AB,BN⊥AC
∴M、N分别是AB、AC的中点
∴MN是△ABC的中位线
∴MN∥BC
故④正确
即正确的结论有①②④
故选:C
【点睛】
本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.
9、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、B
【分析】
根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
【详解】
第一个图形是中心对称图形,又是轴对称图形,
第二个图形是中心对称图形,又是轴对称图形,
第三个图形不是中心对称图形,是轴对称图形,
第四个图形不是中心对称图形,是轴对称图形,
综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
故选:B.
【点睛】
点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、
【分析】
先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.
【详解】
:如图所示,在矩形ABCD中,∠AOB=60°,,
∵四边形ABCD是矩形,
∴∠ABC=90°,,
∴△ABC是等边三角形,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.
2、或.
【分析】
根据正方形的面积公式得出面积为1,根据正方形面积公式为对角线AB乘积的一半求出正方形的对角线长,利用点A的位置,得出圆与数轴的交点对应的数即可.
【详解】
解:∵以单位长度为边长画一个正方形,
∴正方形面积为1,
∴,
∴AB=,
∵点A在1的位置,
∴圆与数轴的交点对应的数为或.
故答案为或.
【点睛】
本题考查数轴上点表示数,正方形性质,算术平方根,图形旋转,掌握数轴上点表示数,正方形性质,图形旋转特征是解题关键
3、144°度
【分析】
先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.
【详解】
解:∵四边形的四个外角的度数之比为1:2:3:4,
∴四个外角的度数分别为:360°×;
360°×;
360°×;
360°×;
∴它最大的内角度数为:.
故答案为:144°.
【点睛】
本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.
4、10或14或10
【分析】
利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.
【详解】
解: 四边形ABCD是平行四边形,
,,,
,,
BF平分∠ABC, CE平分∠BCD,
,,
,,
由等角对等边可知:,,
情况1:当与相交时,如下图所示:
,
,
,
情况2:当与不相交时,如下图所示:
,
,
故答案为:10或14.
【点睛】
本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.
5、(9,4)、(-3,4)、(3,-4)
【分析】
根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.
【详解】
∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),
∴AD=BO=6,AD∥BO,
∴D的横坐标是3+6=9,纵坐标是4,
即D的坐标是(9,4),
同理可得出D的坐标还有(-3,4)、(3,-4).
故答案为:(9,4)、(-3,4)、(3,-4).
【点睛】
本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.
三、解答题
1、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31
【分析】
(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;
(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;
(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.
【详解】
解:(1)如图1,连接AC,延长CE交AD于点H,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠BAC=60°;
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠BAP=∠CAE=60°﹣∠PAC,
∴△BAP≌△CAE(SAS),
∴BP=CE;
∵四边形ABCD是菱形,
∴∠ABP=∠ABC=30°,
∴∠ABP=∠ACE=30°,
∵∠ACB=60°,
∴∠BCE=60°+30°=90°,
∴CE⊥BC;
故答案为:BP=CE,CE⊥BC;
(2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
如图2中,连接AC,设CE与AD交于H,
∵菱形ABCD,∠ABC=60°,
∴△ABC和△ACD都是等边三角形,
∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,
∵△APE是等边三角形,
∴AP=AE,∠PAE=60°,
∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
∴∠BAP=∠CAE,
∴△ABP≌△ACE(SAS),
∴BP=CE,∠ACE=∠ABD=30°,
∴∠DCE=30°,
∵∠ADC=60°,
∴∠DCE+∠ADC=90°,
∴∠CHD=90°,
∴CE⊥AD;
∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,
∵四边形ABCD是菱形,
∴AC⊥BD BD平分∠ABC,
∵∠ABC=60°,AB=2,
∴∠ABO=30°,
∴AO=AB=,OB=AO=3,
∴BD=6,
由(2)知CE⊥AD,
∵AD∥BC,
∴CE⊥BC,
∵BE=2,BC=AB=2,
∴CE==8,
由(2)知BP=CE=8,
∴DP=2,
∴OP=5,
∴AP===2,
∵△APE是等边三角形,
∴S△AEP=×(2)2=7,
如图4中,当点P在DB的延长线上时,同法可得AP===2,
∴S△AEP=×(2)2=31,
【点睛】
此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.
2、(1),(2)(3,7)
【分析】
(1)先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;
(2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.
【详解】
(1)∵一次函数y=-x+3中,
令x=0得:y=3,令y=0,解得x=4,
∴B的坐标是(0,3),A的坐标是(4,0),
如图,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,
,
∴△ABO≌△CAE(AAS),
∴OB=AE=3,OA=CE=4,OE=OA+AE=7,
则点C的坐标是(7,4),
设直线BC的解析式是y=kx+b(k≠0),
根据题意得:,
解得,
∴直线BC的解析式是y=x+3.
(2)如图,作DM⊥y轴于点M,
∵四边形ABDC为正方形,由(1)知△ABO≌△CAE,
同理可得:△ABO≌△BDM,
∴DM=OB=3,BM=OA=4,OM=OB+BM=7,
则点D的坐标是(3,7).
【点睛】
本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.
3、(1)证明见解析;(2)证明见解析;
【分析】
(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,,利用“一组对边平行且相等的四边形是平行四边形”判断即可;
(2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴,AB=CD,
∵CE=DC,
∴AB=EC,,
∴四边形ABEC是平行四边形;
(2)∵由(1)知,四边形ABEC是平行四边形,
∴FA=FE,FB=FC.
∵四边形ABCD是平行四边形,
∴∠ABC=∠D.
又∵∠AFC=2∠ADC,
∴∠AFC=2∠ABC.
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形.
【点睛】
本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.
4、见解析
【分析】
(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;
(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;
(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.
【详解】
(1)解:△ACF是等腰三角形,理由如下:
如图,
由折叠可知,∠1=∠2,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠2=∠3,
∴∠1=∠3,
∴AF=CF,
∴△ACF是等腰三角形;
(2)∵四边形ABCD是矩形且AB=8,BC=4,
∴AD=BC=4,CD=AB=8,∠D=90°,
设FD=x,则AF=CF=8-x,
在Rt△AFD中,根据勾股定理得AD2+DF2=AF2,
∴42+x2=(8-x)2,
解得x=3 ,即DF=3,
∴CF=8-3=5,
∴;
(3)如图,连接PB,
根据折叠得:CE=CB,∠ECP=∠BCP,
∵CP=CP,
∴△ECP≌△BCP,
∴PE=PB,
∴PE+PF=PE+PB,
∴当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,
由(2)知:CF=5,
∵BC=4,∠BCF=90°,
∴ ,
即PE+PF最小值为 .
【点睛】
本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.
5、【教材呈现】见解析;【应用】 ;【拓展】
【分析】
(教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
(应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
(拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
【详解】
解:(教材呈现)∵四边形ABCD是矩形,
∴AECF,
∴∠EAO=∠FCO,
∵EF垂直平分AC,
∴AO=CO,∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA)
∴OE=OF,
又∵AO=CO,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形;
(应用)如图,连接AC、EC
由(教材呈现)可得平行四边形AFCE是菱形,
∴AF=CF,∠AFE=∠EFC,
∵AF2=BF2+AB2,
∴(5−BF)2=BF2+16,
∴BF=,
∴AF=CF=,
∵AB⊥BC,
∴△ABC是直角三角形
∴AC=
∵S四边形AFCE=,
∴
∴EF=,
故答案为:.
(拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,
∵四边形ABCD是平行四边形,∠C=45°,
∴∠ABC=135°,
∴∠ABN=45°,
∵AN⊥BC,
∴∠ABN=∠BAN=45°,
∴△ANB是等腰直角三角形
∵AN2+BN2=AB2,AN=BN
∴AN=BN=3,NC=6+3=9
∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
∴AF=CF,∠AFE=∠EFC,
∵ADBC,
∴∠AEF=∠EFC=∠AFE,
∴AE=AF,
∵AF2=AN2+NF2,
∴AF2=9+(9−AF)2,
∴AF=5,
∴AE=AF=5,
∵ANMF,ADBC,
∴四边形ANFM是平行四边形,
∵AN⊥BC,
∴四边形ANFM是矩形,
∴AN=MF=3,
∴AM==4,
∴ME=AE−AM=1,
∴EF==,
∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
故答案为:.
【点睛】
本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共27页。
这是一份2021学年第十五章 四边形综合与测试练习题,共29页。试卷主要包含了下列图形中,是中心对称图形的是,下列∠A等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共26页。