搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形定向练习练习题(含详解)

    精品试卷京改版八年级数学下册第十五章四边形定向练习练习题(含详解)第1页
    精品试卷京改版八年级数学下册第十五章四边形定向练习练习题(含详解)第2页
    精品试卷京改版八年级数学下册第十五章四边形定向练习练习题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版第十五章 四边形综合与测试课后测评

    展开

    这是一份北京课改版第十五章 四边形综合与测试课后测评,共25页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.2、如图,矩形ABCD的对角线ACBD相交于点O,若∠AOD=120°,AC=16,则AB的长为(  )A.16 B.12 C.8 D.43、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )A.7 B.8 C.9 D.104、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°5、平面直角坐标系内与点P关于原点对称的点的坐标是(     A. B. C. D.6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是(    A.180° B.220° C.240° D.260°7、如图,在△ABC中,点EF分别是ABAC的中点.已知∠B=55°,则∠AEF的度数是(  )A.75° B.60° C.55° D.40°8、如图,在平面直角坐标系中,点Ax轴正半轴上的一个动点,点Cy轴正半轴上的点,于点C.已知.点B到原点的最大距离为(    A.22 B.18 C.14 D.109、下列图形中不是中心对称图形的是(    A. B. C. D.10、平行四边形中,,则的度数是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,上的两个动点,且,则的最小值是________.2、如图,矩形ABCD中,ACBD相交于点OAC=12,如果∠AOD=60°,则DC=__.3、点P(1,2)关于原点中心对称的点的坐标为_______.4、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.5、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点PBC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
     三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形中,点是边延长线上一点,连接,过点,垂足为点交于点(1)求证:(2)若,求 BG的长.2、已知:在中,点、点、点分别是的中点,连接(1)如图1,若,求证:四边形为菱形;(2)如图2,过延长线于点,连接,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
     3、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点PPQAB于点Q,连结PQ,以PQMQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为SS>0),点P的运动时间为t秒.(1)①BC的长为       ②用含t的代数式表示线段PQ的长为     (2)当QM的长度为10时,求t的值;(3)求St的函数关系式;(4)当过点Q和点N的直线垂直于RtABC的一边时,直接写出t的值.4、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CECD,连接DEAC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FMCF的数量关系,并证明你的结论.5、(3)点PAC上一动点,则PE+PF最小值为. -参考答案-一、单选题1、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.2、C【分析】由题意可得AOBOCODO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,AC=2AO=2COBD=2BO=2DOACBD=16,OAOB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,ABAOBO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.3、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.5、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得P(-2,3)关于原点对称的点的坐标是(2,-3),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,故选C.【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.7、C【分析】EF是△ABC的中位线,得EFBC,再由平行线的性质即可求解.【详解】解:∵点EF分别是ABAC的中点,EF是△ABC的中位线,EFBC∴∠AEF=∠B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键.8、B【分析】首先取AC的中点E,连接BEOEOB,可求得OEBE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BEOEOB∵∠AOC=90°,AC=16,OECEAC=8,BCACBC=6,BE10,若点OEB不在一条直线上,则OBOE+BE=18.若点OEB在一条直线上,则OBOE+BE=18,∴当OEB三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.10、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.二、填空题1、【分析】过点AAD//BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接AM,三点DMA′共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题.【详解】解:过点AAD//BC,且ADMN,连接MD则四边形ADMN是平行四边形,
    MDANADMN
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接AM
    AMAM
    AMANAMDM
    ∴三点DMA′共线时,AMDM最小为AD的长,
    AD//BCAOBC
    ∴∠DA=90°,
    ,,
    ∴BC=BOCOAO
    在Rt△AD中,由勾股定理得:
    D
    的最小是值为:故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.2、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,OAODAC×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,ADOA=6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD等边三角形.3、(-1,-2)【分析】平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.4、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长==10,∴斜边中线长为×10=5,故答案为 5.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键.5、【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:的三等分点中有如图:当将纸片沿横向对折根据题意得:中有的三等分点故答案为:【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.三、解答题1、(1)见解析;(2)【分析】(1)由正方形的性质可得,由的余角相等可得∠CBG=∠CDE,进而证明△BCG≌△DCE,从而证明CG=CE(2)证明正方形的性质可得,结合已知条件即可求得,进而勾股定理即可求得的长【详解】(1)∵BFDE∴∠BFE=90°∵四边形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+E∴∠CBG=∠CDE∴△BCG≌△DCECG=CE(2)∵,且CG=CE    中,【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.2、(1)证明见详解;(2)与面积相等的平行四边形有【分析】(1)根据三角形中位线定理可得:,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFBDECFADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.【详解】解:(1)∵DEF分别是ABACBC的中点,∴四边形DECF为平行四边形,∴四边形DECF为菱形;(2)∵DEF分别是ABACBC的中点,∴四边形DEFBDECFADFE是平行四边形,∴四边形EGCF是平行四边形,∴与面积相等的平行四边形有【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.3、(1)①;②;(2)t的值为;(3)S=-t2+20tS=;(4)t=2s或s.【分析】(1)①由勾股定理可求解;
    ②由直角三角形的性质可求解;
    (2)分两种情况讨论,由QM的长度为10,列出方程可求解;
    (3)分两种情况讨论,由面积公式可求解;
    (4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.【详解】解:(1)①∵∠ACB=90°,∠B=30°,AB=20,AC==10,
    BC=②∵PQAB∴∠BQP=90°,∵∠B=30°,
    PQ=由题意得:BP=2t
    PQ=t,
    故答案为:t;(2)在RtPQB中,BQ==3t
    当点M与点Q相遇,20=AM+BQ=4t+3t,
    t=
    当0<t时,MQ=AB-AM-BQ
    ∴20-4t-3t=10,
    t=
    t=5时,MQ=AM+BQ-AB
    ∴4t+3t-20=10,
    t=
    综上所述:当QM的长度为10时,t的值为(3)当0<t时,S=PQ·MQ=t×(20-7t)=-t2+20t
    <t≤5时,如图,

    ∵四边形PQMN是矩形,
    PN=QM=7t-20,PQ=t
    ∴∠B=30°,MEBEBM=1∶2∶BM=20-4t
    ME=
    S==(4)如图,若NQAC

    NQBC
    ∴∠B=∠MQN=30°,
    MNNQMQ=1∶2∶MQ=20-7tMN=PQ=

    t=2,如图,若NQBC

    NQAC
    ∴∠A=∠BQN=90°-∠B=60°,
    ∴∠PQN=90°-∠BQN=30°,
    PNNQPQ=1∶2∶PN=MQ=7t-20,PQ=

    t=
    综上所述:当t=2s或s时,过点Q和点N的直线垂直于RtABC的一边.【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.4、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DEAC交点即为F;过FAD的垂直平分线与AD交点即为M(2)证明DF平分,再利用角平分线的性质判定即可.【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD∵四边形ABCD是平行四边形ADBCABCD,DF平分∵∠BAC=90°【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.5、见解析【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点FPB三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,ABCD∴∠2=∠3,∴∠1=∠3,AF=CF∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,∠D=90°,FD=x,则AF=CF=8-xRtAFD中,根据勾股定理得AD2+DF2=AF2∴42+x2=(8-x2解得x=3  ,即DF=3,CF=8-3=5,(3)如图,连接PB根据折叠得:CE=CB,∠ECP=∠BCPCP=CP∴△ECP≌△BCPPE=PBPE+PF=PE+PB∴当点FPB三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,∠BCF=90°,PE+PF最小值为【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。

    数学八年级下册第十五章 四边形综合与测试课时练习:

    这是一份数学八年级下册第十五章 四边形综合与测试课时练习,共26页。试卷主要包含了下列图形中,是中心对称图形的是,下列图形中不是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map