初中数学北京课改版八年级下册第十五章 四边形综合与测试单元测试练习题
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试单元测试练习题,共26页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案中,是中心对称图形,但不是轴对称图形的是( )A. B.C. D.2、下列图形中,是中心对称图形的是( )A. B. C. D.3、已知正多边形的一个外角等于45°,则该正多边形的内角和为( )A.135° B.360° C.1080° D.1440°4、下列图形中不是中心对称图形的是( )A. B. C. D.5、下列图形中,可以看作是中心对称图形的是( )A. B.C. D.6、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )A. B. C. D.7、如图,矩形ABCD的对角线AC和BD相交于点O,若∠AOD=120°,AC=16,则AB的长为( )A.16 B.12 C.8 D.48、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )A. B. C. D.9、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A.7 B.8 C.9 D.1010、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.2、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.3、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果∠AOD=60°,则DC=__.4、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.5、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____ .三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰三角形ABC中,AB=BC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a到的位置,AB与相交于点D,AC与分别交于点E,F.(1)求证:BCF;(2)当C=a时,判定四边形的形状并说明理由.2、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.(1)求证:D是EC中点;(2)若,于点F,直接写出图中与CF相等的线段.3、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知.写出各点的坐标:A( , ),B( , ),C( , ).(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.①若的一条边与BC平行,求此时点M的坐标;②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.4、如图,四边形ABCD为平行四边形,∠BAD的平分线AF交CD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE;(2)BE⊥AF.5、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE -参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.2、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45°, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.4、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.5、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.6、B【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.【详解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中点,∴CE=AD=,故选: B.【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.7、C【分析】由题意可得AO=BO=CO=DO=8,可证△ABO是等边三角形,可得AB=8.【详解】解:∵四边形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=BO=8,故选:C.【点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键.8、B【分析】利用中心对称图形的定义判断即可.【详解】解:根据中心对称图形的定义可知,②满足条件.故选:.【点睛】本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.9、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.10、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.二、填空题1、七【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则
(n-2)•180°-2×360°=180°,
解得n=7.
故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.2、4【分析】过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.【详解】如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,∵四边形ABCD的对角线交点为O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,
∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.3、【分析】根据矩形的对角线互相平分且相等可得OA=OD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,∴OA=OD=AC=×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=6,∴.故答案为:.【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.4、【分析】先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD中,∠AOB=60°,,∵四边形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等边三角形,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.5、5cm或5.2cm【分析】当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;当点P在CD上,如图,∵PB=AM∵四边形ABCD为正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,
当点P在AD上,如图,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的长为5cm或5.2cm.故答案为5cm或5.2cm.
【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.三、解答题1、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通过证明∠FBC=∠可得 BC,利用∠EC=∠C=180°推出∠EC+∠=180° 得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.【详解】(1)证明:∵等腰三角形ABC旋转角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠C B=B=AB=BC∴BCF(ASA) (2)解:四边形为菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=a B=B=AB=BC又∵ ∠BD=∠FBC=a ∴∠FBC=∠∴BC ∴∠EC=∠C=180°∴∠EC+∠=180° ∴BCE∴四边形为平行四边形又∵B=BC∴ 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.2、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四边形ABDE为平行四边形,∴AB=DE,∴CD=ED,∴点D为CE中点;(2)结论为:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF为等边三角形,∴CF=CD=DF=AB=ED.【点睛】本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.3、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
【分析】(1)设,,,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、、的长,即可得到A、B、C的坐标;(3)①分当时,;当时,;得出方程,解方程即可;②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.【详解】解:(1)证明:设,,,则,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)①如图3-1所示,当MN∥BC时,∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M为AB的中点,∵,∴,∴,∴点M的坐标为(2,0);如图3-2所示,当ON∥BC时,同理可得,∴,∴M点的坐标为(4,0);∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
②如图3-3所示,当OM=OE时,∵E是AC的中点,∠AOC=90°,,∴,∴此时M的坐标为(0,10);如图3-4所示,当时,∴此时M点与A点重合,∴M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EF⊥x轴于F,∵OE=AE,EF⊥OA,∴,∴,设,则,∵,∴,解得,∴M点的坐标为(,0);综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.4、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠D=∠ECF,则可证明△ADE≌△FCE(ASA);(2)由平行四边形的性质证出AB=BF,由全等三角形的性质得出AE=FE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,∴∠D=∠ECF,∵E为CD的中点,∴ED=EC,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA);(2)∵四边形ABCD为平行四边形,∴AB=CD,AD∥BC,∴∠FAD=∠AFB,又∵AF平分∠BAD,∴∠FAD=∠FAB.∴∠AFB=∠FAB.∴AB=BF,∵△ADE≌△FCE,∴AE=FE,∴BE⊥AF.【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.5、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.【详解】解:四边形ABCD是矩形,,,,,,在和中, .【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.
相关试卷
这是一份数学八年级下册第十五章 四边形综合与测试同步练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时练习,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共24页。试卷主要包含了如图,M,下列∠A等内容,欢迎下载使用。