搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十五章四边形达标测试练习题(精选)

    2022年京改版八年级数学下册第十五章四边形达标测试练习题(精选)第1页
    2022年京改版八年级数学下册第十五章四边形达标测试练习题(精选)第2页
    2022年京改版八年级数学下册第十五章四边形达标测试练习题(精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试复习练习题,共27页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为( )
    A.B.C.D.
    2、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
    A.梯形B.菱形C.矩形D.正方形
    3、下列图形中,既是中心对称图形又是轴对称图形的有几个( )
    A.1个B.2个C.3个D.4个
    4、下列说法中,正确的是( )
    A.若,,则
    B.90′=1.5°
    C.过六边形的每一个顶点有4条对角线
    D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
    5、如图,在中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
    A.20B.10C.5D.2
    6、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
    A.5B.4C.3D.2
    7、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )
    A.1B.2C.3D.4
    8、下列各APP标识的图案是中心对称图形的是( )
    A.B.C.D.
    9、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是( )
    A.B.C.D.54
    10、下列图案中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.
    2、已知正方形ABCD的一条对角线长为2,则它的面积是______.
    3、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
    4、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.
    5、已知一个多边形内角和1800度,则这个多边形的边数_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且.
    (1)求所在直线的解析式;
    (2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸片重叠部分的面积;
    (3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为________.
    2、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接.
    (1)当点在线段上时,如图①,求证:;
    (2)当点在直线上移动时,位置如图②、图③所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
    3、已知:如图:五边形ABCDE的内角都相等,DF⊥AB.
    (1)则∠CDF=
    (2)若ED=CD,AE=BC,求证:AF=BF.
    4、(1)如图1,∠ADC=120°,∠BCD=140°,∠DAB和∠CBE的平分线交于点,则∠AFB的度数是 ;
    (2)如图2,若∠ADC=,∠BCD=,且,∠DAB和∠CBE的平分线交于点,则∠AFB= (用含,的代数式表示);
    (3)如图3,∠ADC=,∠BCD=,当∠DAB和∠CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;
    (4)如果将(2)中的条件改为,再分别作∠DAB和∠CBE的平分线,∠AFB与,满足怎样的数量关系?请画出图形并直接写出结论.
    5、如图,在菱形ABCD中,点E,F分别是边AB和BC上的点,且BE=BF.求证:∠DEF=∠DFE.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.
    【详解】
    解:∵点P是∠AOB平分线上的一点,,
    ∴,
    ∵PD⊥OA,M是OP的中点,
    ∴,

    ∵点C是OB上一个动点
    ∴当时,PC的值最小,
    ∵OP平分∠AOB,PD⊥OA,
    ∴最小值,
    故选C.
    【点睛】
    本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.
    2、B
    【分析】
    根据题意得到,然后根据菱形的判定方法求解即可.
    【详解】
    解:由题意可得:,
    ∴四边形是菱形.
    故选:B.
    【点睛】
    此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
    3、A
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;
    第二个图形是轴对称图形,不是中心对称图形,不符合题意;
    第三个图形是轴对称图形,不是中心对称图形,不符合题意;
    第四个图形既是轴对称图形,也是中心对称图形,符合题意;
    既是中心对称图形又是轴对称图形的只有1个,
    故选:A.
    【点睛】
    本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、B
    【分析】
    由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
    【详解】
    解:若,则故A不符合题意;
    90′=故B符合题意;
    过六边形的每一个顶点有3条对角线,故C不符合题意;
    疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
    故选:B.
    【点睛】
    本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
    5、C
    【分析】
    由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.
    【详解】
    解:∵在中,,AB=10,CD是AB边上的中线
    故选:C.
    【点睛】
    本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
    6、A
    【分析】
    利用直角三角形斜边的中线的性质可得答案.
    【详解】
    解:∵∠C=90°,若D为斜边AB上的中点,
    ∴CD=AB,
    ∵AB的长为10,
    ∴DC=5,
    故选:A.
    【点睛】
    此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
    7、B
    【分析】
    根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解
    【详解】
    第一个图形是中心对称图形,又是轴对称图形,
    第二个图形是中心对称图形,又是轴对称图形,
    第三个图形不是中心对称图形,是轴对称图形,
    第四个图形不是中心对称图形,是轴对称图形,
    综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.
    故选:B.
    【点睛】
    点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、C
    【分析】
    根据中心对称图形的概念对各选项分析判断即可得解.
    【详解】
    A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
    C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
    D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】
    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    10、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    二、填空题
    1、七
    【分析】
    根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.
    【详解】
    解:设多边形的边数为n,则
    (n-2)•180°-2×360°=180°,
    解得n=7.
    故答案为:七.
    【点睛】
    本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.
    2、6
    【分析】
    正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.
    【详解】
    解: 正方形ABCD的一条对角线长为2,

    故答案为:
    【点睛】
    本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.
    3、或
    【分析】
    分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
    【详解】
    如图:当将纸片沿纵向对折
    根据题意可得:
    为的三等分点
    在中有
    如图:当将纸片沿横向对折
    根据题意得:,
    在中有
    为的三等分点
    故答案为:或
    【点睛】
    本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
    4、4
    【分析】
    过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.
    【详解】
    如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,
    ∵四边形ABCD的对角线交点为O,
    ∴OA=OC,∠ABC=90°,AB=BC,
    ∴OG∥BC,OH∥AB,
    ∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,
    ∴=4,
    ∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,
    ∴∠FOH=∠EOG,
    ∵∠OGE=∠OHF=90°,OG=OH,
    ∴△OGE≌△OHF,
    ∴,
    ∴,
    ∴=4,
    故答案为:4.
    【点睛】
    本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.
    5、12
    【分析】
    设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.
    【详解】
    解:设这个多边形的边数是n,
    依题意得,
    ∴,
    ∴.
    故答案为:12.
    【点睛】
    考查了多边形的内角和定理,关键是根据n边形的内角和为解答.
    三、解答题
    1、(1);(2)10;(3)(4,2).
    【分析】
    (1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;
    (2)首先由折叠的性质得到AE=CE,然后在Rt△OCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;
    (3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可.
    【详解】
    解:(1)∵OA=2CO,
    设OC=x,则OA=2x
    在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,
    ∴x2+(2x)2=(4)2
    解得x=4(x=﹣4舍去)
    ∴OC=4,OA=8
    ∴A(8,0),C(0,4)
    设直线AC解析式为y=kx+b,
    ∴,解得,
    ∴直线AC解析式为y=﹣x+4;
    (2)由折叠得AE=CE,
    设AE=CE=y,则OE=8﹣y,
    在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,
    ∴(8﹣y)2+42=y2
    解得y=5
    ∴AE=CE=5
    在矩形OABC中,
    ∵BCOA,
    ∴∠CFE=∠AEF,
    由折叠得∠AEF=∠CEF,
    ∴∠CFE=∠CEF
    ∴CF=CE=5
    ∴S△CEF=CF•OC=×5×4=10
    即重叠部分的面积为10;
    (3)∵矩形是一个中心对称图形,对称中心是对角线的交点,
    ∴任何一个经过对角线交点的直线都把矩形的面积平分,
    所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,
    ∵A(8,0),C(0,4),
    ∴M点坐标为(4,2).
    【点睛】
    此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式.
    2、(1)见解析;(2)图②中,图③中
    【分析】
    (1)在上截取,连接,可先证得,则,,进而可证得△AED为等腰直角三角形,即可得证;
    (2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系.
    【详解】
    解:(1)证明:如图,在上截取,连接.
    ∵四边形是正方形,
    ,,
    ,,



    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,


    (2)图②:,理由如下:
    如下图,在延长线上截取,连接.
    ∵四边形是正方形,
    ,,
    ,,


    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,


    图③:
    如图,在DE上截取DF=BE,连接.
    ∵四边形是正方形,
    ,,
    ,,


    ,,

    ,,

    ∴△ECF是等腰直角三角形,
    在中,,


    【点睛】
    本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.
    3、(1)54°;(2)见解析.
    【分析】
    (1)根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC内角和计算出∠CDF的度数;
    (2)连接AD、DB,然后证明△DEA≌△DCB可得AD=DB,再根据等腰三角形的性质可得AF=BF.
    【详解】
    解:(1)∵五边形ABCDE的内角都相等,
    ∴∠C=∠B=∠EDC=180°×(5﹣2)÷3=108°,
    ∵DF⊥AB,
    ∴∠DFB=90°,
    ∴∠CDF=360°﹣90°﹣108°﹣108°=54°,
    故答案为:54°.
    (2)连接AD、DB,
    在△AED和△BCD中,

    ∴△DEA≌△DCB(SAS),
    ∴AD=DB,
    ∵DF⊥AB,
    ∴AF=BF.
    【点睛】
    本题主要考查了多边形内角和公式,全等三角形的性质与判定,等腰三角形的性质与判定,熟练掌握多边形内角和公式是解题的关键.
    4、(1)40°;(2);(3)若AG∥BH,则α+β=180°,理由见解析;(4),图见解析.
    【分析】
    (1)利用四边形内角和定理得到∠DAB+∠ABC=360°-120°-140°=100°.再利用三角形的外角性质得到∠F=∠FBE-∠FAB,通过计算即可求解;
    (2)同(1),通过计算即可求解;
    (3)由AG∥BH,推出∠GAB=∠HBE.再推出AD∥BC,再利用平行线的性质即可得到答案;
    (4)利用四边形内角和定理得到∠DAB+∠ABC=360°-∠D-BCD=360°-α-β.再利用三角形的外角性质得到∠F=∠MAB-∠ABF,通过计算即可求解.
    【详解】
    解:(1)∵BF平分∠CBE,AF平分∠DAB,
    ∴∠FBE=∠CBE,∠FAB=∠DAB.
    ∵∠D+∠DCB+∠DAB+∠ABC=360°,
    ∴∠DAB+∠ABC=360°-∠D-∠DCB
    =360°-120°-140°=100°.
    又∵∠F+∠FAB=∠FBE,
    ∴∠F=∠FBE-∠FAB=∠CBE−∠DAB
    = (∠CBE−∠DAB)
    = (180°−∠ABC−∠DAB)
    =×(180°−100°)
    =40°.
    故答案为:40°;
    (2)由(1)得:∠AFB= (180°−∠ABC−∠DAB),
    ∠DAB+∠ABC=360°-∠D-∠DCB.
    ∴∠AFB= (180°−360°+∠D+∠DCB)
    =∠D+∠DCB−90°
    =α+β−90°.
    故答案为:;
    (3)若AG∥BH,则α+β=180°.理由如下:
    若AG∥BH,则∠GAB=∠HBE.
    ∵AG平分∠DAB,BH平分∠CBE,
    ∴∠DAB=2∠GAB,∠CBE=2∠HBE,
    ∴∠DAB=∠CBE,
    ∴AD∥BC,
    ∴∠DAB+∠DCB=α+β=180°;
    (4)如图:
    ∵AM平分∠DAB,BN平分∠CBE,
    ∴∠BAM=∠DAB,∠NBE=∠CBE,
    ∵∠D+∠DAB+∠ABC+∠BCD=360°,
    ∴∠DAB+∠ABC=360°-∠D-BCD=360°-α-β,
    ∴∠DAB+180°-∠CBE=360°-α-β,
    ∴∠DAB-∠CBE=180°-α-β,
    ∵∠ABF与∠NBE是对顶角,
    ∴∠ABF=∠NBE,
    又∵∠F+∠ABF=∠MAB,
    ∴∠F=∠MAB-∠ABF,
    ∴∠F=∠DAB−∠NBE
    =∠DAB−∠CBE
    = (∠DAB−∠CBE)
    = (180°−α−β)
    =90°-α−β.
    【点睛】
    本题主要考查了三角形的外角性质、四边形内角和定理、平行线的性质、角平分线的定义.借助转化的数学思想,将未知条件转化为已知条件解题.
    5、见解析
    【分析】
    根据菱形的性质可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS证明△ADE≌△CDF得到DE=DF,则∠DEF=∠DFE.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,∠A=∠C,
    ∵BE=BF,
    ∴AB-BE=BC-BF,即AE=CF,
    ∴△ADE≌△CDF(SAS),
    ∴DE=DF,
    ∴∠DEF=∠DFE.
    【点睛】
    本题主要考查了菱形的性质,全等三角形的性质与判定,等腰三角形的性质与判定,解题的关键在于能够熟练掌握菱形的性质.

    相关试卷

    2021学年第十五章 四边形综合与测试练习:

    这是一份2021学年第十五章 四边形综合与测试练习,共27页。

    初中北京课改版第十五章 四边形综合与测试课后作业题:

    这是一份初中北京课改版第十五章 四边形综合与测试课后作业题,共26页。

    北京课改版八年级下册第十五章 四边形综合与测试当堂检测题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂检测题,共29页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map