数学八年级下册第十五章 四边形综合与测试课时作业
展开
这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共25页。试卷主要包含了下列∠A等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
2、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为( )
A.6B.6.5C.10D.13
3、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
4、已知中,,,CD是斜边AB上的中线,则的度数是( )
A.B.C.D.
5、下列各APP标识的图案是中心对称图形的是( )
A.B.C.D.
6、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cmB.2cmC.1cmD.2cm
7、下列图形既是中心对称图形,又是轴对称图形的是( )
A.B.
C.D.
8、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5B.2C.D.
9、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4B.1:4:2:3
C.1:2:2:1D.3:2:3:2
10、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120°B.118°C.110°D.108°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知正方形ABCD的一条对角线长为2,则它的面积是______.
2、如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.
3、如图,在矩形中,,,点是线段上的一点(不与点,重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.
4、在矩形ABCD中,点E在AD边上,△BCE是以BE为一腰的等腰三角形,若AB=4,BC=5,则线段DE的长为 _____.
5、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.
2、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE
3、如图,一次函数y=- x+3的图像分别与x轴、y轴交于点A,B,以线段AB为边在第一象限内作等腰直角三角形ABC,∠BAC=90°,
(1)求过B,C两点的直线的解析式.
(2)作正方形ABDC,求点D的坐标.
4、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;
(拓展应用)
(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
5、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)
-参考答案-
一、单选题
1、B
【详解】
解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
2、B
【分析】
根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵直角三角形两直角边长为5和12,
∴斜边=,
∴此直角三角形斜边上的中线的长==6.5.
故选:B.
【点睛】
本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.
3、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、既是轴对称图形,又是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、B
【分析】
由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.
【详解】
解:∵∠ACB=90°,∠B=54°,
∴∠A=36°,
∵CD是斜边AB上的中线,
∴CD=AD,
∴∠ACD=∠A=36°.
故选:B.
【点睛】
本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.
5、C
【分析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
7、D
【分析】
一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可.
【详解】
A、既不是中心对称图形,也不是轴对称图形,故不符合题意;
B、是轴对称图形,但不是中心对称图形,故不符合题意;
C、是中心对称图形,但不是轴对称图形,故不符合题意;
D、既是中心对称图形,也是轴对称图形,故符合题意.
【点睛】
本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键.
8、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
9、D
【分析】
两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.
【详解】
解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
【点睛】
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
10、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
二、填空题
1、6
【分析】
正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.
【详解】
解: 正方形ABCD的一条对角线长为2,
故答案为:
【点睛】
本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.
2、##
【分析】
根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得:(cm),
∴DO=5cm,
∵点E、F分别是AO、AD的中点,
∴EF=OD=2.5cm,
故答案为:2.5.
【点睛】
本题考查了矩形的性质的应用,勾股定理,三角形中位线的应用,解本题的关键是求出OD长及证明EF=OD.
3、或
【分析】
根据题意分,,三种情况讨论,构造直角三角形,利用勾股定理解决问题.
【详解】
解:∵四边形是矩形
∴,
∵将△沿折叠,使得点落在处,
∴
,,
设,则
①当时,如图
过点作,则四边形为矩形
,
在中
在中
即
解得
②当时,如图,设交于点,
设
垂直平分
在中
即
在中,
即
联立,解得
③当时,如图,
又
垂直平分
垂直平分
此时重合,不符合题意
综上所述,或
故答案为:或
【点睛】
本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.
4、2.5或2.
【分析】
需要分类讨论:①BE1=E1C,此时点E1是BC的中垂线与AD的交点;②BE=BC,在直角△ABE中,利用勾股定理求得AE的长度,然后求得DE的长度即可.
【详解】
解:①当BE1=E1C时,点E1是BC的中垂线与AD的交点,;
②当BC=BE=5时,在直角△ABE中,AB=4,则,
∴.
综上所述,线段DE的长为2.5或2.
故答案是:2.5或2.
【点睛】
本题考查矩形的性质和等腰三角形的性质,勾股定理,在此题中,没有确定等腰三角形的底边,所以需要分类讨论,以防漏解.
5、16
【分析】
由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.
【详解】
∵四边形ABCD是菱形,且对角线相交于点O
∴点O是AC的中点
∵E为DC的中点
∴OE为△CAD的中位线
∴AD=2OE=2×2=4
∴菱形的周长为:4×4=16
故答案为:16
【点睛】
本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.
三、解答题
1、
【分析】
由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
【详解】
解:∵四边形ABCD为矩形,
∴AB=CD,∠A=∠C=90°
∵由翻折的性质可知∠F=∠A,BF=AB,
∴BF=DC,∠F=∠C.
在△DCE与△BEF中,
∴△DCE≌△BFE.
在Rt△BDC中,由勾股定理得:BC=.
∵△DCE≌△BFE,
∴BE=DE.
设BE=DE=x,则EC=12−x.
在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
解得:x=.
∴BE=.
【点睛】
本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
2、见解析
【分析】
利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.
【详解】
解:四边形ABCD是矩形,
,,
,
,
,
在和中,
.
【点睛】
本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.
3、(1),(2)(3,7)
【分析】
(1)先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,由全等三角形的性质可知OA=CE,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式;
(2)由正方形的性质以及△ABO≌△CAE,同理可得△ABO≌△BDM,进而可得点D的坐标.
【详解】
(1)∵一次函数y=-x+3中,
令x=0得:y=3,令y=0,解得x=4,
∴B的坐标是(0,3),A的坐标是(4,0),
如图,作CE⊥x轴于点E,
∵∠BAC=90°,
∴∠OAB+∠CAE=90°,
又∵∠CAE+∠ACE=90°,
∴∠ACE=∠BAO.
在△ABO与△CAE中,
,
∴△ABO≌△CAE(AAS),
∴OB=AE=3,OA=CE=4,OE=OA+AE=7,
则点C的坐标是(7,4),
设直线BC的解析式是y=kx+b(k≠0),
根据题意得:,
解得,
∴直线BC的解析式是y=x+3.
(2)如图,作DM⊥y轴于点M,
∵四边形ABDC为正方形,由(1)知△ABO≌△CAE,
同理可得:△ABO≌△BDM,
∴DM=OB=3,BM=OA=4,OM=OB+BM=7,
则点D的坐标是(3,7).
【点睛】
本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,正方形的性质,解题的关键是根据题意作出辅助线,构造出全等三角形.
4、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
【分析】
(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
(2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
【详解】
(1)证明:∵∠ACD是△ABC的外角
∴∠ACD=∠A+∠ABC
∵CE平分∠ACD
∴
又∵∠ECD=∠E+∠EBC
∴
∵BE平分∠ABC
∴
∴
∴;
(2)①∵∠ACD=130°,∠BCD=50°
∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
∵∠CBA=40°
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
∵AD平分∠BAC
∴
∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
②∠CAD+41°=∠CBD
设∠CBD=α
∵∠ABD+∠CBD=180°
∴∠ABC=180°﹣2α
∵∠ACB=82°
∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
∵AD平分∠BAC
∴∠CAD=∠CAB=α﹣41°
∴∠CAD+41°=∠CBD.
【点睛】
本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
5、2598元
【分析】
根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.
【详解】
连接BD,AD相交于点O,如图:
∵四边形ABCD是一个菱形,
∴AC⊥BD,
∵∠ABC=120°,
∴∠A=60°,
∴△ABD为等边三角形,
∵菱形的周长为40m,
∴菱形的边长为10m,
∴BD=10m,BO=5m,
∴在Rt△AOB中,m,
∴AC=2OA=m,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EH=BD =5m,EF=AC=5m,
∴S矩形=5×5=50m2,
则需投资资金50×30=1500×1.732≈2598元
【点睛】
本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.
相关试卷
这是一份初中北京课改版第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试课后复习题,共30页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共25页。试卷主要包含了下列图形中,是中心对称图形的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。