搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)

    2022年强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第1页
    2022年强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第2页
    2022年强化训练京改版八年级数学下册第十五章四边形必考点解析试卷(名师精选)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共31页。
    京改版八年级数学下册第十五章四边形必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是(  )

    A. B. C. D.54
    2、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    3、下列图形中,可以看作是中心对称图形的是( )
    A. B.
    C. D.
    4、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).

    A.4 B.10 C.6 D.8
    5、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )
    A.7 B.8 C.9 D.10
    6、下列图形中,不是中心对称图形的是( )
    A. B. C. D.
    7、下列图案中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    8、下列图形中,既是轴对称图形又是中心对称图形的是( ).
    A. B.
    C. D.
    9、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A. B.
    C. D.
    10、下列图形中,是中心对称图形的是(  )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )

    2、如图,圆柱形容器高为0.8m,底面周长为4.8m,在容器内壁离底部0.1m的点处有一只蚊子,此时一只壁虎正好在容器的顶部点处,若容器壁厚忽略不计,则壁虎捕捉蚊子的最短路程是______m.


    3、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.
    4、在平面直角坐标系中,与点(2,-7)关于y轴对称的点的坐标为____.
    5、如图,点E,F在正方形ABCD的对角线AC上,AC=10,AE=CF=3,则四边形BFDE的面积为 _____.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,
    (1)如图1,求证:CD=BE
    (2)如图2,过点A作AF⊥BE,写出AF,BD,CD之间的数量关系并说明理由.

    2、如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E,CD=5,DB=13,求BE的长.


    3、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.

    4、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:

    ①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
    ②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
    然后运用类似的思想提出了如下命题:
    ③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
    任务要求:
    (1)请你从①②③三个命题中选择一个进行证明;
    (2)请你继续完成下面的探索;
    ①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
    ②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
    5、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;

    (拓展应用)
    (2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
    ①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
    ②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.

    -参考答案-
    一、单选题
    1、C
    【分析】
    过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
    【详解】

    如图,过点F作,分别交于M、N,
    ∵四边形ABCD是矩形,
    ∴,,
    ∵点E是BC的中点,
    ∴,
    ∵F是AE中点,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
    2、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    4、B
    【分析】
    根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
    【详解】
    解:∵∠C=90°,
    ∴∠CAB+∠CBA=90°,
    ∵点P,D分别是AF,AB的中点,
    ∴PD=BF=6,PD//BC,
    ∴∠PDA=∠CBA,
    同理,QD=AE=8,∠QDB=∠CAB,
    ∴∠PDA+∠QDB=90°,即∠PDQ=90°,
    ∴PQ==10,
    故选:B.
    【点睛】
    本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    5、D
    【分析】
    根据多边形外角和定理求出正多边形的边数.
    【详解】
    ∵正多边形的每一个外角都等于36°,
    ∴正多边形的边数==10.
    故选:D.
    【点睛】
    本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
    6、C
    【详解】
    解:选项A是中心对称图形,故A不符合题意;
    选项B是中心对称图形,故B不符合题意;
    选项C不是中心对称图形,故C符合题意;
    选项D是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.
    7、B
    【详解】
    A.是轴对称图形,不是中心对称图形,故不符合题意;
    B. 既是轴对称图形,又是中心对称图形,故符合题意;
    C.是轴对称图形,不是中心对称图形,故不符合题意;
    D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
    故选B
    【点睛】
    本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    8、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
    C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    9、B
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    故选:B.
    【点睛】
    本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
    10、D
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    【详解】
    A、不是中心对称图形,故此选项不合题意;
    B、不是中心对称图形,故此选项不合题意;
    C、不是中心对称图形,故此选项不合题意;
    D、是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.
    二、填空题
    1、2
    【分析】
    当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.
    【详解】
    解:当AP=AB时,
    ∵四边形ABCD为正方形,
    ∴AB=AD,
    ∴AP=AD.
    ∵ 将△ADE沿DE对折, 得到△PDE,
    ∴AD=DP,
    ∴AP=AD=DP,
    ∴△APD为等边三角形,
    ∴∠ADP=60°,
    ∴∠ADE=30°,
    ∴,
    ∴设,则,
    ∴在中,,即,
    ∴解得:;
    当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,

    ∵AD⊥AB,
    ∴四边形AFPG为矩形,
    ∴PG=AF.
    ∵AP=PB,PF⊥AB,
    ∴AF=AB=.
    ∵AB=AD=DP,
    ∴PG=AF=PD=,
    如图,作DP的中点M,连接GM,



    又∵

    ∴是等边三角形


    ∴∠GDP=30°.
    ∵∠DAE=∠DPE=90°,∠ADP=30°,
    ∴∠AEP=150°,
    ∴∠PEF=30°.
    设PF=x,则PE=AE=2x,EF=x,
    ∴AE+EF=(2+)x= ,
    ∴x=2-3,
    ∴AE=4-6.
    故答案为:2或4-6.
    【点睛】
    此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.
    2、2.5.
    【分析】
    如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,然后分别求出AC,BC的长度,利用勾股定理求解即可.
    【详解】
    解:如图所示,将容器侧面展开,连接AB,则AB的长即为最短距离,
    ∵圆柱形容器高为0.8m,底面周长为4.8m在容器内壁离底部0.1m的点B处有一只蚊子,此时一只壁虎正好在容器的顶部点A处,
    ∴,,,
    过点B作BC⊥AD于C,
    ∴∠BCD =90°,
    ∵四边形ADEF是矩形,
    ∴∠ADE=∠DEF=90°
    ∴四边形BCDE是矩形,
    ∴,,
    ∴,
    ∴,
    答:则壁虎捕捉蚊子的最短路程是2.5m.
    故答案为:2.5.

    【点睛】
    本题主要考查了平面展开—最短路径,解题的关键在于能够根据题意确定展开图中AB的长即为所求.
    3、10或14或10
    【分析】
    利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.
    【详解】
    解: 四边形ABCD是平行四边形,
    ,,,
    ,,
    BF平分∠ABC, CE平分∠BCD,
    ,,
    ,,
    由等角对等边可知:,,
    情况1:当与相交时,如下图所示:





    情况2:当与不相交时,如下图所示:





    故答案为:10或14.
    【点睛】
    本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.
    4、(-2,-7)
    【分析】
    根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.
    【详解】
    解:点(2,-7)关于y轴对称的点的坐标是(-2,-7).
    故答案为:(-2,-7).
    【点睛】
    解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
    5、20
    【分析】
    连接BD,交AC于O,根据题意和正方形的性质可求得EF=4,AC⊥BD,由即可求解.
    【详解】
    解:如图,连接BD,交AC于O,

    ∵四边形ABCD是正方形,AC=10,
    ∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,
    ∵AE=CF=3,
    ∴EO=FO=2,
    ∴EF=EO+FO=4,

    故答案为:20.
    【点睛】
    本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.
    三、解答题
    1、(1)证明见解析;(2)BD= CD+2AF,理由见解析
    【分析】
    (1)延长BA与CD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则;
    (2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.
    【详解】
    解:(1)如图所示,延长BA与CD的延长线交于点G,
    ∵∠BAC=90°,
    ∴∠CAG=90°,
    ∵CD⊥BE,
    ∴∠EDC=∠GDB=∠BAE=90°,
    又∵∠AEB=∠DEC,
    ∴∠ABE=∠DCE,
    在△ABE和△ACG中,

    ∴△ABE≌△ACG(ASA),
    ∴BE=CG,
    ∵BD是∠ABC的角平分线,
    ∴∠GBD=∠CBD,
    在△BDG和△BDC中,

    ∴△BDG≌△BDC(ASA),
    ∴CD=GD,
    ∴;

    (2)BD= CD+2AF,理由如下:
    如图所示,连接AD,取BE中点H,连接AH,
    由(1)得CD=GD,,
    ∵△BAE和△CAG都是直角三角形,H为BE中点,D为CG中点,
    ∴,,
    ∴,
    ∴∠ABH=∠BAH,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=45°,
    又∵BD平分∠ABC,
    ∴∠ABH=∠BAH=22.5°,
    ∴∠AHF=∠ABH+∠BAH=45°,
    ∵AF⊥DH,
    ∴HF=DF,∠AFH=90°,
    ∴∠HAF=45°,
    ∴AF=HF,
    ∴DH=2AF,
    ∴BD=BH+HD=BH+2AF=CD+2AF.

    【点睛】
    .本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    2、
    【分析】
    由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE,依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴AB=CD,∠A=∠C=90°
    ∵由翻折的性质可知∠F=∠A,BF=AB,
    ∴BF=DC,∠F=∠C.
    在△DCE与△BEF中,
    ∴△DCE≌△BFE.
    在Rt△BDC中,由勾股定理得:BC=.
    ∵△DCE≌△BFE,
    ∴BE=DE.
    设BE=DE=x,则EC=12−x.
    在Rt△CDE中,CE2+CD2=DE2,即(12−x)2+52=x2.
    解得:x=.
    ∴BE=.
    【点睛】
    本题主要考查的是翻折的性质、勾股定理的应用、矩形的性质,依据勾股定理列出关于x的方程是解题的关键.
    3、4
    【分析】
    分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。
    【详解】
    解:如图,分别过作垂足为点

    四边形ABEF为菱形,
    ,,


    在中, ,
    根据题意,,根据平行线间的距离处处相等,

    .
    答:的面积为4.
    【点睛】
    本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.
    4、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
    【分析】
    (1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
    (2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
    ②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
    【详解】
    解:(1)如选命题①,证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCAN中,

    ∴ ,
    ∴ ;
    如选命题②,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    如选命题③,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    (2)①根据(1)中规律可得:当时,结论成立;
    ②答:当时,成立.
    证明:如图所示,连接BD、CE,


    在和中,

    ∴ ,
    ∴ ,,,
    ∵ ,
    ∴ ,
    ∵ ,.
    ∴ ,
    又∵ ,
    ∴ ,
    在和中,

    ∴ ,
    ∴ .
    【点睛】
    题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
    5、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
    【分析】
    (1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
    (2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
    【详解】
    (1)证明:∵∠ACD是△ABC的外角
    ∴∠ACD=∠A+∠ABC
    ∵CE平分∠ACD

    又∵∠ECD=∠E+∠EBC

    ∵BE平分∠ABC


    ∴;
    (2)①∵∠ACD=130°,∠BCD=50°
    ∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
    ∵∠CBA=40°
    ∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
    ∵AD平分∠BAC

    ∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
    ②∠CAD+41°=∠CBD
    设∠CBD=α
    ∵∠ABD+∠CBD=180°
    ∴∠ABC=180°﹣2α
    ∵∠ACB=82°
    ∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
    ∵AD平分∠BAC
    ∴∠CAD=∠CAB=α﹣41°
    ∴∠CAD+41°=∠CBD.
    【点睛】
    本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.

    相关试卷

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。

    数学八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试当堂达标检测题,共29页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map