数学八年级下册第十五章 四边形综合与测试单元测试课时训练
展开
这是一份数学八年级下册第十五章 四边形综合与测试单元测试课时训练,共32页。
京改版八年级数学下册第十五章四边形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使其与图中阴影部分构成中心对称图形.该小正方形的序号是( )
A. B. C. D.
2、下列图案中,是中心对称图形的是( )
A. B. C. D.
3、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为( )
A.2 B.4 C.4或 D.2或
4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )
A. B. C. D.
5、如图,在中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
A.20 B.10 C.5 D.2
6、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为( )
A. B. C.4.5 D.4.3
7、下列图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )
A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD
C.AD=AE D.AE=CE
9、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为( )
A.20º B.25º C.30º D.35º
10、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
2、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.
3、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
4、如图,的度数为_______.
5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.
三、解答题(5小题,每小题10分,共计50分)
1、在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点,过点D作DE⊥AB,交BC于点E,连接AE,取AE的中点P,连接DP,CP.
(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 .
(2)类比探究: 将图(1)中的△BDE绕点B逆时针旋转45°,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由.
(3)问题解决: 若BC=3BD=3, 将图(1)中的△BDE绕点B在平面内自由旋转,当BE⊥AB时,请直接写出线段CP的长.
2、如图,在正方形中,是直线上的一点,连接,过点作,交直线于点,连接.
(1)当点在线段上时,如图①,求证:;
(2)当点在直线上移动时,位置如图②、图③所示,线段,与之间又有怎样的数量关系?请直接写出你的猜想,不需证明.
3、如图,平行四边形ABCD中,点E、F分别在CD、BC的延长线上,.
(1)求证:D是EC中点;
(2)若,于点F,直接写出图中与CF相等的线段.
4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.
5、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C.
(1)写出C点坐标 ;
(2)若M为线段BC上一点,且满足S△AMB = S△AOB,请求出点M的坐标;
(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.
-参考答案-
一、单选题
1、B
【分析】
利用中心对称图形的定义判断即可.
【详解】
解:根据中心对称图形的定义可知,②满足条件.
故选:.
【点睛】
本题主要考查了利用旋转设计图案和中心对称图形的定义,明确将一个图形绕一点旋转180°后与本身重合的图形叫做中心对称图形是解题的关键.
2、B
【分析】
由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
【详解】
解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
故选:B.
【点睛】
本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、D
【分析】
根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
【详解】
解:当△EAP与△PBQ全等时,有两种情况:
①当EA=PB时,△APE≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴BP=AE=6cm,AP=4cm,
∴BQ=AP=4cm;
∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
∴点P和点Q的运动时间为:4÷2=2s,
∴v的值为:4÷2=2cm/s;
②当AP=BP时,△AEP≌△BQP(SAS),
∵AB=10cm,AE=6cm,
∴AP=BP=5cm,BQ=AE=6cm,
∵5÷2=2.5s,
∴2.5v=6,
∴v=.
故选:D.
【点睛】
本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
4、C
【分析】
由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
解: 矩形ABCD,
设BE=x,
∵AE为折痕,
∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,
∴Rt△EFC中,,EC=2-x,
∴,
解得:,
则点E到点B的距离为:.
故选:C.
【点睛】
本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.
5、C
【分析】
由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.
【详解】
解:∵在中,,AB=10,CD是AB边上的中线
故选:C.
【点睛】
本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
6、A
【分析】
根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
【详解】
解:∵四边形ABCD为正方形,
∴∠B=∠DCF=90°,BC=DC,
在△CBE和△DCF中,
,
∴△CBE≌△DCF(SAS),
∴∠BCE=∠CDF,
∵∠BCE+∠DCH=90°,
∴∠CDF+∠DCH=90°,
∴∠DHC=∠DHE=90°,
∵点G为DE的中点,
∴GH=DE,
∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
∴,
∴GH=.
故选A.
【点睛】
本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
7、B
【详解】
A.是轴对称图形,不是中心对称图形,故不符合题意;
B. 既是轴对称图形,又是中心对称图形,故符合题意;
C.是轴对称图形,不是中心对称图形,故不符合题意;
D.既不是轴对称图形,也不是中心对称图形,故不符合题意;
故选B
【点睛】
本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
8、D
【分析】
根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.
【详解】
解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.
【点睛】
本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.
9、C
【分析】
依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.
【详解】
∵ADBC,
∴∠AEB=∠DAE=∠B=80°,
∴AE=AB=AD,
在三角形AED中,AE=AD,∠DAE=80°,
∴∠ADE=50°,
又∵∠B=80°,
∴∠ADC=80°,
∴∠CDE=∠ADC-∠ADE=30°.
故选:C.
【点睛】
考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.
10、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
二、填空题
1、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
2、
【分析】
设 则再利用矩形的性质建立方程求解 从而可得答案.
【详解】
解: 四边形BHDG为菱形,
设
AD=3AB,
设 则
矩形ABCD,
解得:
故答案为:
【点睛】
本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.
3、-1
【分析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
【详解】
解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
∴m=﹣2021,n=2020,
∴m+n=﹣1.
故答案为:-1.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
4、
【分析】
根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.
【详解】
解:如图,
∵∠1=∠D+∠F,∠2=∠A+∠E,∠1+∠2+∠B+∠C=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为:.
【点睛】
本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
5、144°度
【分析】
先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.
【详解】
解:∵四边形的四个外角的度数之比为1:2:3:4,
∴四个外角的度数分别为:360°×;
360°×;
360°×;
360°×;
∴它最大的内角度数为:.
故答案为:144°.
【点睛】
本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.
三、解答题
1、(1)PD=PC,PD⊥PC;(2)成立,见解析;(3)2或4
【分析】
(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;
(2)过点P作PT⊥AB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;
(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQ⊥BC于Q,利用等腰直角三角形的性质求得,即可求解.
【详解】
解:(1)∵∠ACB=90°,AC=BC,
∴,
∵,
∴,
∵点P为AE的中点,
∴,
∴,,
∴,
∴
故答案为:,.
(2)结论成立.理由如下:
过点P作PT⊥AB交BC的延长线于T,交AC于点O.
则
∴,
∴,,
由勾股定理可得:
∴
∴
∴
∵点P为AE的中点,
∴
∴
在中,,
∴,
∴
∴
∴,
∴
∴,
∴.
(3)如图3﹣1中,当点E在BC的上方时,过点P作PQ⊥BC于Q.
则,
∴
∵
∴
由(2)可得,,,∴为等腰直角三角形
∴
∴
由勾股定理得,
如图3﹣2中,当点E在BC的下方时,同法可得PC=PD=2.
综上所述,PC的长为4或2.
【点睛】
此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形.
2、(1)见解析;(2)图②中,图③中
【分析】
(1)在上截取,连接,可先证得,则,,进而可证得△AED为等腰直角三角形,即可得证;
(2)仿照(1)的证明思路,作出相应的辅助线,即可证得对应的,与之间的数量关系.
【详解】
解:(1)证明:如图,在上截取,连接.
∵四边形是正方形,
,,
,,
,
,
,
,,
,
,,
,
∴△ECF是等腰直角三角形,
在中,,
,
;
(2)图②:,理由如下:
如下图,在延长线上截取,连接.
∵四边形是正方形,
,,
,,
,
,
,,
,
,,
,
∴△ECF是等腰直角三角形,
在中,,
,
;
图③:
如图,在DE上截取DF=BE,连接.
∵四边形是正方形,
,,
,,
,
,
,,
,
,,
,
∴△ECF是等腰直角三角形,
在中,,
,
.
【点睛】
本题是四边形综合题,考查了正方形的性质、全等三角形的判定及性质、等腰直角三角形、勾股定理等相关知识,正确作出辅助线构造全等三角形是解决本题的关键.
3、(1)见祥解;(2)AB=DC=DE=DF=CF,证明见详解.
【分析】
(1)根据四边形ABCD是平行四边形,得出AB∥CD即(AB∥ED),AB=CD,根据,可证四边形ABDE为平行四边形,得出AB=DE即可;
(2)根据EF⊥BF,CD=ED,根据直角三角形斜边中线可得DF=CD=ED,再证△DCF为等边三角形即可.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD即(AB∥ED),AB=CD,
∵,
∴四边形ABDE为平行四边形,
∴AB=DE,
∴CD=ED,
∴点D为CE中点;
(2)结论为:AB=DC=DE=DF=CF,
∵EF⊥BF,CD=ED,
∴DF=CD=ED,
∵AB∥CD,∠ABC=60°,
∴∠DCF=∠ABC=60°,
∴△DCF为等边三角形,
∴CF=CD=DF=AB=ED.
【点睛】
本题考查平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质,掌握平行四边形的判定与性质,线段中点判定,直角三角形斜边中线性质,等边三角形判定与性质是解题关键.
4、4
【分析】
分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。
【详解】
解:如图,分别过作垂足为点
四边形ABEF为菱形,
,,
,
在中, ,
根据题意,,根据平行线间的距离处处相等,
.
答:的面积为4.
【点睛】
本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.
5、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为或.
【分析】
(1)直接利用直线,令y=0,解方程即可;
(2)结合图形,由S△AMB=S△AOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;
(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-n,n+2),代入直线BC的解析式解方程即可解决问题.
【详解】
解:(1)∵直线交x轴正半轴于点C.
∴当y=0时,,
解得x=6
∴点C(6,0)
故答案为(6,0);
(2)连接OM并双向延长,
∵S△AMB=S△AOB ,
∴点O到AB与点M到AB的距离相等,
∴直线OM平行于直线AB,
∵AB解析式为y=2x+8,
故设直线OM解析式为:,
将直线OM的解析式与直线BC的解析式联立得方程组得:
,
解得:
故点;
(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B,
∴令y=0,2x+8=0,
解得x=-4,
∴A(-4,0),
令x=0,则y=8
∴B(0,8),
∵点F为AB中点,
点F横坐标为,纵坐标为
∴F(-2,4),
设G(0,n),
①当n>4时,如图2-1中,点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN=n-4,
∴Q(n-4,n-2),
∵点Q在直线上,
∴,
∴,
∴.
②当n<4时,如图2-2中,
点Q落在BC上时,过G作MN平行于x轴,过点F,Q作该直线的垂线,分别交于M,N.
∵四边形FGQP是正方形,
∴FG=QG,∠FGQ=90°,
∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,
∵FM⊥MN,QN⊥MN,
∴∠M=∠N=90°,
∴∠MFG+∠MGF=90°,
∴∠MFG=∠NGQ,
在△FMG和△GNQ中,
,
∴△FMG≌△GNQ,
∴MG=NQ=2,FM=GN= 4-n,
∴Q(4- n, n+2),
∵点Q在直线上,
∴,
∴n=-2,
∴.
综上所述,满足条件的点G坐标为或.
【点睛】
本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
相关试卷
这是一份北京课改版第十五章 四边形综合与测试巩固练习,共28页。试卷主要包含了下列∠A,如图,在六边形中,若,则,下列说法中,不正确的是等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试随堂练习题,共26页。
这是一份北京课改版第十五章 四边形综合与测试课后练习题,共30页。