数学第十五章 四边形综合与测试同步测试题
展开
这是一份数学第十五章 四边形综合与测试同步测试题,共31页。
京改版八年级数学下册第十五章四边形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
2、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
3、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
4、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )
A. B. C. D.
5、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
7、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为( )
A.7 B. C.8 D.9
8、下列四个图形中,为中心对称图形的是( )
A. B.
C. D.
9、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④
10、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.
2、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.
3、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.
4、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).
5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,△AOB是等腰直角三角形.
(1)若A(﹣4,1),求点B的坐标;
(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
2、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒.
(1)①BC的长为 ;
②用含t的代数式表示线段PQ的长为 ;
(2)当QM的长度为10时,求t的值;
(3)求S与t的函数关系式;
(4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.
3、如图,在Rt△ABC中,∠ACB=90°,D为AB中点,.
(1)试判断四边形BDCE的形状,并证明你的结论;
(2)若∠ABC=30°,AB=4,则四边形BDCE的面积为 .
4、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形.
(2)当四边形BEDF是菱形时,求EF的长.
5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.
结合图①,写出完整的证明过程
(应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
(拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .
-参考答案-
一、单选题
1、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
2、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
3、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、既是轴对称图形,又是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、C
【分析】
过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
【详解】
如图,过点P作交于点M,
∵四边形ABCD是菱形,
∴,,
∵,,
∴,,
∴,,
在与中,
,
∴,
∴,
在中,,
∴,
,即,
解得:,
∴.
故选:C.
【点睛】
此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
5、D
【分析】
根据轴对称图形与中心对称图形的概念求解即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.是轴对称图形,不是中心对称图形,故此选项符合题意;
D.是轴对称图形,也是中心对称图形,故此选项不合题意.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
6、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
7、C
【分析】
根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.
【详解】
解:∵∠AEB=90,D是边AB的中点,AB=6,
∴DE=AB=3,
∵EF=1,
∴DF=DE+EF=3+1=4.
∵D是边AB的中点,点F是边BC的中点,
∴DF是ABC的中位线,
∴AC=2DF=8.
故选:C.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.
8、B
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
【详解】
解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
故选:B.
【点睛】
此题主要考查了中心对称图形定义,关键是找出对称中心.
9、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
10、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
二、填空题
1、8
【分析】
运用三角形的中位线的知识解答即可.
【详解】
解:∵△ABC中,D、E分别是AB、AC的中点
∴DE是△ABC的中位线,
∴BC=2DE=8cm.
故答案是8.
【点睛】
本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.
2、
【分析】
由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.
【详解】
解:∵正方形中B与D关于AC对称,
∴PB=PD,
∴PD+PE=PB+PE=BE,此时PD+PE最小,
∵正方形ABCD的面积为18,△ABE是等边三角形,
∴BE=3,
∴PD+PE最小值是3,
故答案为:3.
【点睛】
本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.
3、8
【分析】
证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
【详解】
解:∵四边形ABCD是平行四边形,
∴,AB=CD,
∵,
∴四边形ABDE是平行四边形,
∴DE=CD=,,
过点E作EH⊥BF于H,
∵,
∴∠ECH=,
∴CH=EH,
∵,,
∴CH=EH=4,
∵∠EHF=90°,,
∴EF=2EH=8,
故答案为:8.
【点睛】
此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
4、AC=BD且AC⊥BD(答案不唯一)
【分析】
根据正方形的判定定理,即可求解.
【详解】
解:当AC=BD时,平行四边形ABCD为菱形,
又由AC⊥BD,可得菱形ABCD为正方形,
所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.
故答案为:AC=BD且AC⊥BD(答案不唯一)
【点睛】
本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
5、6
【分析】
根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=9,BC=AD
∵•AB•BF=54,
∴BF=12.
在Rt△ABF中,AB=9,BF=12,
由勾股定理得,.
∴BC=AD=AF=15,
∴CF=BC-BF=15-12=3.
设DE=x,则CE=9-x,EF=DE=x.
则x2=(9-x)2+32,
解得,x=5.
∴DE=5.
∴EC=DC-DE=9-5=4.
∴△FCE的面积=×4×3=6.
【点睛】
本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
三、解答题
1、(1)(1,4);(2)45°;(3)见解析
【分析】
(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
【详解】
解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
∴∠AEO=∠OFB=90°,
∴∠AOE+∠OAE=90°,
又∵∠AOB=90°,
∴∠AOE+∠BOF=90°,
∴∠OAE=∠BOF,
∵AO=OB,
∴△OAE≌△BOF(AAS),
∴OF=AE,BF=OE,
∵点A的坐标为(-4,1),
∴OF=AE=1,BF=OE=4,
∴点B的坐标为(1,4);
(2)如图所示,延长MP与AN交于H,
∵AH⊥y轴,BM⊥y轴,
∴BM∥AN,
∴∠MBP=∠HAP,∠AHP=∠BMP,
∵点P是AB的中点,
∴AP=BP,
∴△APH≌△BPM(AAS),
∴AH=BM,
∵A点坐标为(-4,1),B点坐标为(1,4),
∴AN=4,OM=4,BM=1,ON=1,
∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
∴HN=MN,
∴∠NHM=∠NMH=45°,即∠PMO=45°;
(3)如图所示,连接OP,AM,取BM中点G,连接GP,
∴GP是△ABM的中位线,
∴AM∥GP,
∵Q是ON的中点,G是BM的中点,ON=BM=1,
∴,
∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
∴,∠OAB=∠OBA=45°,∠OPB=90°
∴∠PAO=∠POA=45°,
∴∠POB=45°,
∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
∴∠NAO=∠BON,
∵∠OAB=∠POB=45°,
∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
由(2)得∠GBP=∠BAN,
∴∠GBP=∠QOP,
∴△PQO≌△PGB(SAS),
∴∠OPQ=∠BPG,
∵∠OPQ+∠BPQ=90°,
∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
∴PQ⊥PG,
∴PG⊥AM;
【点睛】
本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
2、(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s.
【分析】
(1)①由勾股定理可求解;
②由直角三角形的性质可求解;
(2)分两种情况讨论,由QM的长度为10,列出方程可求解;
(3)分两种情况讨论,由面积公式可求解;
(4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.
【详解】
解:(1)①∵∠ACB=90°,∠B=30°,AB=20,
∴AC==10,
∴BC=;
②∵PQ⊥AB,
∴∠BQP=90°,
∵∠B=30°,
∴PQ=,
由题意得:BP=2t,
∴PQ=t,
故答案为:t;
(2)在Rt△PQB中,
BQ==3t,
当点M与点Q相遇,20=AM+BQ=4t+3t,
∴t=,
当0<t<时,MQ=AB-AM-BQ,
∴20-4t-3t=10,
∴t=,
当<t≤=5时,MQ=AM+BQ-AB,
∴4t+3t-20=10,
∴t=,
综上所述:当QM的长度为10时,t的值为或;
(3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t;
当<t≤5时,如图,
∵四边形PQMN是矩形,
∴PN=QM=7t-20,PQ=t,
∴∠B=30°,
∴ME∶BE∶BM=1∶2∶,
∵BM=20-4t,
∴ME=,
∴S==;
(4)如图,若NQ⊥AC,
∴NQ∥BC,
∴∠B=∠MQN=30°,
∵MN∶NQ∶MQ=1∶2∶,
∵MQ=20-7t,MN=PQ=,
∴,
∴t=2,
如图,若NQ⊥BC,
∴NQ∥AC,
∴∠A=∠BQN=90°-∠B=60°,
∴∠PQN=90°-∠BQN=30°,
∴PN∶NQ∶PQ=1∶2∶,
∵PN=MQ=7t-20,PQ=,
∴,
∴t=,
综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.
【点睛】
本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.
3、(1)四边形是菱形,证明见解析;(2)
【分析】
(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;
(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.
【详解】
证明:(1)四边形是菱形,理由如下:
,
四边形是平行四边形,
∠ACB=90°,D为AB中点,
四边形是菱形.
(2) ∠ABC=30°,AB=4,∠ACB=90°,
D为AB中点,
四边形是菱形,
故答案为:
【点睛】
本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.
4、(1)证明见解析;(2)
【分析】
(1)由题意知,,通过得到,证明四边形BEDF平行四边形.
(2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
【详解】
(1)证明:∵四边形ABCD是矩形,O是BD的中点
∴,
在和中
∴(ASA)
∴
∴四边形BEDF是平行四边形.
(2)解:∵四边形BEDF为菱形,
∴,
又∵,
∴,
设,则
在中,
∴
在中,
∴.
【点睛】
本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
5、【教材呈现】见解析;【应用】 ;【拓展】
【分析】
(教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
(应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
(拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
【详解】
解:(教材呈现)∵四边形ABCD是矩形,
∴AECF,
∴∠EAO=∠FCO,
∵EF垂直平分AC,
∴AO=CO,∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA)
∴OE=OF,
又∵AO=CO,
∴四边形AFCE是平行四边形,
∵EF⊥AC,
∴平行四边形AFCE是菱形;
(应用)如图,连接AC、EC
由(教材呈现)可得平行四边形AFCE是菱形,
∴AF=CF,∠AFE=∠EFC,
∵AF2=BF2+AB2,
∴(5−BF)2=BF2+16,
∴BF=,
∴AF=CF=,
∵AB⊥BC,
∴△ABC是直角三角形
∴AC=
∵S四边形AFCE=,
∴
∴EF=,
故答案为:.
(拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,
∵四边形ABCD是平行四边形,∠C=45°,
∴∠ABC=135°,
∴∠ABN=45°,
∵AN⊥BC,
∴∠ABN=∠BAN=45°,
∴△ANB是等腰直角三角形
∵AN2+BN2=AB2,AN=BN
∴AN=BN=3,NC=6+3=9
∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
∴AF=CF,∠AFE=∠EFC,
∵ADBC,
∴∠AEF=∠EFC=∠AFE,
∴AE=AF,
∵AF2=AN2+NF2,
∴AF2=9+(9−AF)2,
∴AF=5,
∴AE=AF=5,
∵ANMF,ADBC,
∴四边形ANFM是平行四边形,
∵AN⊥BC,
∴四边形ANFM是矩形,
∴AN=MF=3,
∴AM==4,
∴ME=AE−AM=1,
∴EF==,
∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
故答案为:.
【点睛】
本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试练习题,共26页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试练习,共27页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。