年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(无超纲)

    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(无超纲)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(无超纲)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形重点解析练习题(无超纲)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十五章 四边形综合与测试同步测试题

    展开

    这是一份数学第十五章 四边形综合与测试同步测试题,共31页。
    京改版八年级数学下册第十五章四边形重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列测量方案中,能确定四边形门框为矩形的是( )
    A.测量对角线是否互相平分 B.测量两组对边是否分别相等
    C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
    2、下列图形中,可以看作是中心对称图形的是( )
    A. B.
    C. D.
    3、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    4、如图,菱形中,,.以为圆心,长为半径画,点为菱形内一点,连,,.若,且,则图中阴影部分的面积为( )

    A. B. C. D.
    5、下列图形中,既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是(  )

    A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
    7、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为(  )

    A.7 B. C.8 D.9
    8、下列四个图形中,为中心对称图形的是(  )
    A. B.
    C. D.
    9、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是(  )
    A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④
    10、平面直角坐标系内与点P关于原点对称的点的坐标是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,△ABC中,D、E分别是AB、AC的中点,若DE=4cm,则BC=_____cm.


    2、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.

    3、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.


    4、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).
    5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,△AOB是等腰直角三角形.
    (1)若A(﹣4,1),求点B的坐标;
    (2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;
    (3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.

    2、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒.

    (1)①BC的长为   ;
    ②用含t的代数式表示线段PQ的长为   ;
    (2)当QM的长度为10时,求t的值;
    (3)求S与t的函数关系式;
    (4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值.
    3、如图,在Rt△ABC中,∠ACB=90°,D为AB中点,.
    (1)试判断四边形BDCE的形状,并证明你的结论;
    (2)若∠ABC=30°,AB=4,则四边形BDCE的面积为 .

    4、如图,矩形ABCD中,,,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形.
    (2)当四边形BEDF是菱形时,求EF的长.

    5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.

    结合图①,写出完整的证明过程
    (应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
    (拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .


    -参考答案-
    一、单选题
    1、D
    【分析】
    由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
    【详解】
    解:A、∵对角线互相平分的四边形是平行四边形,
    ∴对角线互相平分且相等的四边形才是矩形,
    ∴选项A不符合题意;
    B、∵两组对边分别相等是平行四边形,
    ∴选项B不符合题意;
    C、∵对角线互相平分且相等的四边形才是矩形,
    ∴对角线相等的四边形不是矩形,
    ∴选项C不符合题意;
    D、∵对角线交点到四个顶点的距离都相等,
    ∴对角线互相平分且相等,
    ∵对角线互相平分且相等的四边形是矩形,
    ∴选项D符合题意;
    故选:D.
    【点睛】
    本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
    2、C
    【分析】
    根据中心对称图形的定义进行逐一判断即可.
    【详解】
    解:A、不是中心对称图形,故此选项不符合题意;
    B、不是中心对称图形,故此选项不符合题意;
    C、是中心对称图形,故此选项符合题意;
    D、不是中心对称图形,故此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
    3、C
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A、不是轴对称图形,是中心对称图形,不符合题意;
    B、是轴对称图形,不是中心对称图形,不符合题意;
    C、既是轴对称图形,又是中心对称图形,符合题意;
    D、是轴对称图形,不是中心对称图形,不符合题意.
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、C
    【分析】
    过点P作交于点M,由菱形得,,由,得,,故可得,,根据SAS证明,求出,即可求出.
    【详解】

    如图,过点P作交于点M,
    ∵四边形ABCD是菱形,
    ∴,,
    ∵,,
    ∴,,
    ∴,,
    在与中,

    ∴,
    ∴,
    在中,,
    ∴,
    ,即,
    解得:,
    ∴.
    故选:C.
    【点睛】
    此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.
    5、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.是轴对称图形,不是中心对称图形,故此选项符合题意;
    D.是轴对称图形,也是中心对称图形,故此选项不合题意.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    6、B
    【分析】
    先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AD∥BC,且AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,
    ∴BD⊥AE,
    ∴□DBCE为矩形,故本选项不符合题意;
    B、∵DE⊥DC,
    ∴∠EDB=90°+∠CDB>90°,
    ∴四边形DBCE不能为矩形,故本选项符合题意;
    C、∵∠ADB=90°,
    ∴∠EDB=90°,
    ∴□DBCE为矩形,故本选项不符合题意;
    D、∵CE⊥DE,
    ∴∠CED=90°,
    ∴□DBCE为矩形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
    7、C
    【分析】
    根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.
    【详解】
    解:∵∠AEB=90,D是边AB的中点,AB=6,
    ∴DE=AB=3,
    ∵EF=1,
    ∴DF=DE+EF=3+1=4.
    ∵D是边AB的中点,点F是边BC的中点,
    ∴DF是ABC的中位线,
    ∴AC=2DF=8.
    故选:C.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.
    8、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.
    【详解】
    解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;
    选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;
    故选:B.
    【点睛】
    此题主要考查了中心对称图形定义,关键是找出对称中心.
    9、C
    【分析】
    根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
    【详解】
    解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
    B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
    C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
    D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
    故选:C.
    【点睛】
    本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
    10、C
    【分析】
    根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
    【详解】
    解:由题意,得
    点P(-2,3)关于原点对称的点的坐标是(2,-3),
    故选:C.
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    二、填空题
    1、8
    【分析】
    运用三角形的中位线的知识解答即可.
    【详解】
    解:∵△ABC中,D、E分别是AB、AC的中点
    ∴DE是△ABC的中位线,
    ∴BC=2DE=8cm.
    故答案是8.
    【点睛】
    本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.
    2、
    【分析】
    由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.
    【详解】
    解:∵正方形中B与D关于AC对称,
    ∴PB=PD,
    ∴PD+PE=PB+PE=BE,此时PD+PE最小,
    ∵正方形ABCD的面积为18,△ABE是等边三角形,
    ∴BE=3,
    ∴PD+PE最小值是3,
    故答案为:3.

    【点睛】
    本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.
    3、8
    【分析】
    证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴,AB=CD,
    ∵,
    ∴四边形ABDE是平行四边形,
    ∴DE=CD=,,
    过点E作EH⊥BF于H,
    ∵,
    ∴∠ECH=,
    ∴CH=EH,
    ∵,,
    ∴CH=EH=4,
    ∵∠EHF=90°,,
    ∴EF=2EH=8,
    故答案为:8.

    【点睛】
    此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
    4、AC=BD且AC⊥BD(答案不唯一)
    【分析】
    根据正方形的判定定理,即可求解.
    【详解】
    解:当AC=BD时,平行四边形ABCD为菱形,
    又由AC⊥BD,可得菱形ABCD为正方形,
    所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.
    故答案为:AC=BD且AC⊥BD(答案不唯一)
    【点睛】
    本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
    5、6
    【分析】
    根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.
    【详解】
    解:∵四边形ABCD是矩形
    ∴AB=CD=9,BC=AD
    ∵•AB•BF=54,
    ∴BF=12.
    在Rt△ABF中,AB=9,BF=12,
    由勾股定理得,.
    ∴BC=AD=AF=15,
    ∴CF=BC-BF=15-12=3.
    设DE=x,则CE=9-x,EF=DE=x.
    则x2=(9-x)2+32,
    解得,x=5.
    ∴DE=5.
    ∴EC=DC-DE=9-5=4.
    ∴△FCE的面积=×4×3=6.
    【点睛】
    本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.
    三、解答题
    1、(1)(1,4);(2)45°;(3)见解析

    【分析】
    (1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);
    (2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;
    (3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;
    【详解】
    解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,
    ∴∠AEO=∠OFB=90°,
    ∴∠AOE+∠OAE=90°,
    又∵∠AOB=90°,
    ∴∠AOE+∠BOF=90°,
    ∴∠OAE=∠BOF,
    ∵AO=OB,
    ∴△OAE≌△BOF(AAS),
    ∴OF=AE,BF=OE,
    ∵点A的坐标为(-4,1),
    ∴OF=AE=1,BF=OE=4,
    ∴点B的坐标为(1,4);

    (2)如图所示,延长MP与AN交于H,
    ∵AH⊥y轴,BM⊥y轴,
    ∴BM∥AN,
    ∴∠MBP=∠HAP,∠AHP=∠BMP,
    ∵点P是AB的中点,
    ∴AP=BP,
    ∴△APH≌△BPM(AAS),
    ∴AH=BM,
    ∵A点坐标为(-4,1),B点坐标为(1,4),
    ∴AN=4,OM=4,BM=1,ON=1,
    ∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,
    ∴HN=MN,
    ∴∠NHM=∠NMH=45°,即∠PMO=45°;

    (3)如图所示,连接OP,AM,取BM中点G,连接GP,
    ∴GP是△ABM的中位线,
    ∴AM∥GP,
    ∵Q是ON的中点,G是BM的中点,ON=BM=1,
    ∴,
    ∵P是AB中点,△AOB是等腰直角三角形,∠AOB=90°,
    ∴,∠OAB=∠OBA=45°,∠OPB=90°
    ∴∠PAO=∠POA=45°,
    ∴∠POB=45°,
    ∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,
    ∴∠NAO=∠BON,
    ∵∠OAB=∠POB=45°,
    ∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,
    由(2)得∠GBP=∠BAN,
    ∴∠GBP=∠QOP,
    ∴△PQO≌△PGB(SAS),
    ∴∠OPQ=∠BPG,
    ∵∠OPQ+∠BPQ=90°,
    ∴∠BPG+∠BPQ=90°,即∠GPQ=90°,
    ∴PQ⊥PG,
    ∴PG⊥AM;

    【点睛】
    本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    2、(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s.
    【分析】
    (1)①由勾股定理可求解;
    ②由直角三角形的性质可求解;
    (2)分两种情况讨论,由QM的长度为10,列出方程可求解;
    (3)分两种情况讨论,由面积公式可求解;
    (4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解.
    【详解】
    解:(1)①∵∠ACB=90°,∠B=30°,AB=20,
    ∴AC==10,
    ∴BC=;
    ②∵PQ⊥AB,
    ∴∠BQP=90°,
    ∵∠B=30°,
    ∴PQ=,
    由题意得:BP=2t,
    ∴PQ=t,
    故答案为:t;
    (2)在Rt△PQB中,
    BQ==3t,
    当点M与点Q相遇,20=AM+BQ=4t+3t,
    ∴t=,
    当0<t<时,MQ=AB-AM-BQ,
    ∴20-4t-3t=10,
    ∴t=,
    当<t≤=5时,MQ=AM+BQ-AB,
    ∴4t+3t-20=10,
    ∴t=,
    综上所述:当QM的长度为10时,t的值为或;
    (3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t;
    当<t≤5时,如图,

    ∵四边形PQMN是矩形,
    ∴PN=QM=7t-20,PQ=t,
    ∴∠B=30°,
    ∴ME∶BE∶BM=1∶2∶,
    ∵BM=20-4t,
    ∴ME=,
    ∴S==;
    (4)如图,若NQ⊥AC,

    ∴NQ∥BC,
    ∴∠B=∠MQN=30°,
    ∵MN∶NQ∶MQ=1∶2∶,
    ∵MQ=20-7t,MN=PQ=,
    ∴,
    ∴t=2,
    如图,若NQ⊥BC,

    ∴NQ∥AC,
    ∴∠A=∠BQN=90°-∠B=60°,
    ∴∠PQN=90°-∠BQN=30°,
    ∴PN∶NQ∶PQ=1∶2∶,
    ∵PN=MQ=7t-20,PQ=,
    ∴,
    ∴t=,
    综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边.
    【点睛】
    本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.
    3、(1)四边形是菱形,证明见解析;(2)
    【分析】
    (1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;
    (2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.
    【详解】
    证明:(1)四边形是菱形,理由如下:

    四边形是平行四边形,
    ∠ACB=90°,D为AB中点,

    四边形是菱形.
    (2) ∠ABC=30°,AB=4,∠ACB=90°,


    D为AB中点,

    四边形是菱形,

    故答案为:
    【点睛】
    本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.
    4、(1)证明见解析;(2)
    【分析】
    (1)由题意知,,通过得到,证明四边形BEDF平行四边形.
    (2)四边形BEDF为菱形,,;设,;在中用勾股定理,解出的长,在中用勾股定理,得到的长,由得到的值.
    【详解】
    (1)证明:∵四边形ABCD是矩形,O是BD的中点
    ∴,

    在和中

    ∴(ASA)

    ∴四边形BEDF是平行四边形.
    (2)解:∵四边形BEDF为菱形,
    ∴,
    又∵,
    ∴,
    设,则
    在中,

    在中,
    ∴.
    【点睛】
    本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.
    5、【教材呈现】见解析;【应用】 ;【拓展】
    【分析】
    (教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
    (应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
    (拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
    【详解】
    解:(教材呈现)∵四边形ABCD是矩形,
    ∴AECF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分AC,
    ∴AO=CO,∠AOE=∠COF=90°,
    ∴△AOE≌△COF(ASA)
    ∴OE=OF,
    又∵AO=CO,
    ∴四边形AFCE是平行四边形,
    ∵EF⊥AC,
    ∴平行四边形AFCE是菱形;
    (应用)如图,连接AC、EC
    由(教材呈现)可得平行四边形AFCE是菱形,

    ∴AF=CF,∠AFE=∠EFC,
    ∵AF2=BF2+AB2,
    ∴(5−BF)2=BF2+16,
    ∴BF=,
    ∴AF=CF=,
    ∵AB⊥BC,
    ∴△ABC是直角三角形
    ∴AC=
    ∵S四边形AFCE=,

    ∴EF=,
    故答案为:.
    (拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,

    ∵四边形ABCD是平行四边形,∠C=45°,
    ∴∠ABC=135°,
    ∴∠ABN=45°,
    ∵AN⊥BC,
    ∴∠ABN=∠BAN=45°,
    ∴△ANB是等腰直角三角形
    ∵AN2+BN2=AB2,AN=BN
    ∴AN=BN=3,NC=6+3=9
    ∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
    ∴AF=CF,∠AFE=∠EFC,
    ∵ADBC,
    ∴∠AEF=∠EFC=∠AFE,
    ∴AE=AF,
    ∵AF2=AN2+NF2,
    ∴AF2=9+(9−AF)2,
    ∴AF=5,
    ∴AE=AF=5,
    ∵ANMF,ADBC,
    ∴四边形ANFM是平行四边形,
    ∵AN⊥BC,
    ∴四边形ANFM是矩形,
    ∴AN=MF=3,
    ∴AM==4,
    ∴ME=AE−AM=1,
    ∴EF==,
    ∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
    ∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
    故答案为:.
    【点睛】
    本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试练习题:

    这是一份数学八年级下册第十五章 四边形综合与测试练习题,共26页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试练习,共27页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map