北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题
展开这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了函数的图象如下图所示,一次函数y=mx﹣n,已知点等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、正比例函数y=kx的图象经过一、三象限,则一次函数y=﹣kx+k的图象大致是( )
A. B.
C. D.
2、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )
A.﹣1 B.0 C.1 D.2
3、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
5、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
6、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
7、在函数y=中,自变量x的取值范围是 ( )
A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4
8、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定
9、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )
A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四
10、根据下列表述,能够确定具体位置的是( )
A.北偏东25°方向 B.距学校800米处
C.温州大剧院音乐厅8排 D.东经20°北纬30°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果直线与直线的交点在第二象限,那么b的取值范围是______.
2、函数的定义域是_____.
3、一次函数y1=ax+b与y2=mx+n的部分自变量和对应函数值如下表:
x | … | 0 | 1 | 2 | 3 | … | ||||||
y1 | … | 2 | 1 | … | ||||||||
x | … | 0 | 1 | 2 | 3 | … |
| |||||
y2 | … | ﹣3 | ﹣1 | 1 | 3 | … |
| |||||
则关于x的方程ax﹣mx=n﹣b的解是_________.
4、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.
5、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”.
已知点,.
(1)在点,,中,______是点A和点O的“等距点”;
(2)在点,,中,______是线段OA和OB的“等距点”;
(3)点为x轴上一点,点P既是点A和点C的“等距点”,又是线段OA和OB的“等距点”.
①当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由;
②若点P在内,请直接写出满足条件的m的取值范围.
2、已知一次函数y=-2x+4.求:
(1)求图象与x轴、y轴的交点A、B的坐标.
(2)画出函数的图象.
(3)求△AOB的面积.
3、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
4、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB.
(1)求两个函数的解析式;
(2)求△AOB的面积.
5、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
(1)求y甲、y乙关于x的函数表达式;
(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
(3)甲出发_______小时后,甲、乙两人相距5千米.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.
【详解】
解:∵正比例函数y=kx的图象经过一、三象限
∴
∴
∴一次函数的图象经过一、二、四象限
故选:A
【点睛】
本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.
2、A
【解析】
【分析】
用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.
【详解】
解:把点(0,1)和(1,3)代入y=ax+b,得:,
解得,
∴b﹣a=1﹣2=﹣1.
故选:A.
【点睛】
本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.
3、C
【解析】
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
5、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
6、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
7、D
【解析】
【分析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
【详解】
解:∵x-3≥0,
∴x≥3,
∵x-4≠0,
∴x≠4,
综上,x≥3且x≠4,
故选:D.
【点睛】
主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
8、A
【解析】
【分析】
由题意直接根据一次函数的性质进行分析即可得到结论.
【详解】
解:∵直线y=﹣x+b中,k=﹣<0,
∴y将随x的增大而减小.
∵﹣4<2,
∴y1>y2.
故选:A.
【点睛】
本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
9、D
【解析】
【分析】
根据题意画出函数大致图象,根据图象即可得出结论.
【详解】
解:如图,
∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,
∴该函数图象所经过一、二、四象限,
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.
10、D
【解析】
【分析】
根据确定位置的方法即可判断答案.
【详解】
A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;
B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;
C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;
D. 东经20°北纬30°可以确定一点的位置,故此选项正确.
故选:D.
【点睛】
本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.
二、填空题
1、b<
【解析】
【分析】
联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.
【详解】
解:联立,
解得 ,
∵交点在第二象限,
∴,
解不等式①得:,
解不等式②得:,
∴的取值范围是.
故答案为:.
【点睛】
本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.
2、
【解析】
【分析】
函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.
【详解】
解:根据题意得:3x+6≥0,
解得x≥﹣2.
故答案为:x≥﹣2.
【点睛】
本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
3、
【解析】
【分析】
根据统计表确定两个函数的的交点,然后判断即可.
【详解】
解:根据表可得一次函数y1=ax+b与y2=mx+n的交点坐标是(2,1).
故可得关于x的方程ax﹣mx=n﹣b的解是,
故答案为:.
【点睛】
本题考查了一次函数的性质,正确确定交点坐标是关键.
4、
【解析】
【分析】
直接利用已知点坐标得出原点位置,进而得出答案.
【详解】
解:如图所示,建立平面直角坐标系,
∴轰炸机C的坐标为(-1,-2),
故答案为:(-1,-2).
【点睛】
此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
5、 (4,2)或(-4,2) ##(-4,2)或(4,2)
【解析】
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
三、解答题
1、(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②
【解析】
【分析】
(1)根据“等距点”的定义,即可求解;
(2)根据“等距点”的定义,即可求解;
(3)①根据点P是线段OA和OB的“等距点”,可设点P(x,x)且x>0,再由点P是点A和点C的“等距点”,可得 ,从而得到 ,即可求解;
②根据点P是线段OA和OB的“等距点”, 点P在∠AOB的角平分线上,可设点P(a,a)且a>0,根据OA=OB,可得OP平分线段AB,再由点P在内,可得 ,根据点P是点A和点C的“等距点”,可得 ,从而得到,整理得到,即可求解.
【详解】
解:(1)根据题意得: , , ,
, , ,
∴ ,
∴点是点A和点O的“等距点”;
(2)根据题意得:线段OA在x轴上,线段OB在y轴上,
∴点到线段OA的距离为1,到线段OB的距离为2,
点到线段OA的距离为2,到线段OB的距离为2,
点到线段OA的距离为6,到线段OB的距离为3,
∴点到线段OA的距离和到线段OB的距离相等,
∴点是线段OA和OB的“等距点”;
(3)①存在,点P的坐标为(7,7),理由如下:
∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,
∴可设点P(x,x)且x>0,
∵点P是点A和点C的“等距点”,
∴ ,
∵点C(8,0),,
∴ ,
解得: ,
∴点P的坐标为(7,7);
②如图,
∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,
∴点P在∠AOB的角平分线上,
可设点P(a,a)且a>0,
∵,.
∴OA=OB=6,
∴OP平分线段AB,
∵点P在内,
∴当点P位于AB上时, 此时点P为AB的中点,
∴此时点P的坐标为 ,即 ,
∴ ,
∵点P是点A和点C的“等距点”,
∴ ,
∵点,,
∴,
整理得: ,
当 时,点C(6,0),
此时点C、A重合,则a=6(不合题意,舍去),
当时, ,
∴,解得: ,
即若点P在内,满足条件的m的取值范围为.
【点睛】
本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.
2、(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4
【解析】
【分析】
(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;
(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;
(3)直接利用三角形的面积公式求解.
【详解】
解:(1)让y=0时,
∴0=-2x+4
解得:x=2;
让x=0时,
∴y=-2×0+4=4,
∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);
(2)如下图是一次函数y=-2x+4的图象;
(3)S△AOB=
【点睛】
本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.
3、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
4、(1)y=x,;(2)7.5
【解析】
【分析】
(1)根据A的坐标先求出正比例函数的解析式,再根据已知条件求出点B的坐标,进而可得一次函数解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
【详解】
解:(1)∵A(3,4),
∴OA=,
∴OB= OA=5
∴ B(-5,0)
设正比例函数的解析式为y=mx,∵正比例函数的图象过A(3,4)
∴4=3m,m=,
∴正比例函数的解析式为y=x;
设一次函数的解析式为y=kx+b,
∵过A(3,4)、B(-5,0)
∴.
解得:.
∴一次函数的解析式为;
(2)∵A(3,4),B(-5,0),
∴三角形AOB的面积为5×3×=7.5.
【点睛】
主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.
5、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
【解析】
【分析】
(1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
(2)联立方程组,求出方程组的解即可;
(3)分相遇前和相遇后相距5千米列出方程求解即可.
【详解】
解:(1)设直线l1的解析式为
∵直线l1过点(2,0),(0,10)
∴代入解析式得,
解得,
∴直线l1的解析式为
设直线l2的解析式为
∵直线l2过点(0.5,0),(3,10)
∴代入解析式得,
解得,
∴直线l2的解析式为.
(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
4(x-0.5)+5x=10,
解得x=.
当x=时,y甲=-5×+10=,
∴相遇时甲离B地为km.
故答案为:,
(3)由题意知:①或②
解得,或
所以,甲出发或小时后,甲、乙两人相距5千米.
故答案为:或.
【点睛】
本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了已知点,若一次函数y=kx+b等内容,欢迎下载使用。
这是一份2021学年第十四章 一次函数综合与测试同步练习题,共21页。试卷主要包含了已知一次函数y=ax+b,已知点A等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共22页。试卷主要包含了一次函数y=,一次函数的一般形式是等内容,欢迎下载使用。