终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十四章一次函数专项测评试卷

    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十四章一次函数专项测评试卷第1页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数专项测评试卷第2页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数专项测评试卷第3页
    还剩23页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了函数的图象如下图所示,一次函数y=mx﹣n,已知点等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、正比例函数ykx的图象经过一、三象限,则一次函数y=﹣kxk的图象大致是(       A. B.C. D.2、已知一次函数yaxba≠0)的图象经过点(0,1)和(1,3),则ba的值为(       A.﹣1 B.0 C.1 D.23、点在第四象限,则点在第几象限(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、函数的图象如下图所示:其中为常数.由学习函数的经验,可以推断常数的值满足(       A. B.C. D.5、下列关于变量xy的关系,其中y不是x的函数的是(  )A. B.C. D.6、一次函数ymxnmn为常数)的图象如图所示,则不等式mxn≥0的解集是(       A.x≥2 B.x≤2 C.x≥3 D.x≤37、在函数y=中,自变量x的取值范围是 (  )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠48、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1y2的大小关系是(       A.y1y2 B.y1y2 C.y1y2 D.无法确定9、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为(  )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四10、根据下列表述,能够确定具体位置的是(  )A.北偏东25°方向 B.距学校800米处C.温州大剧院音乐厅8排 D.东经20°北纬30°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如果直线与直线的交点在第二象限,那么b的取值范围是______.2、函数的定义域是_____.3、一次函数y1axby2mxn的部分自变量和对应函数值如下表:x0123y121x0123 y2﹣3﹣113 则关于x的方程axmxnb的解是_________.4、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.5、在平面直角坐标系中有两点,如果点轴上方,由点组成的三角形与全等时,此时点的坐标为______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”.已知点(1)在点中,______是点A和点O的“等距点”;(2)在点中,______是线段OAOB的“等距点”;(3)点x轴上一点,点P既是点A和点C的“等距点”,又是线段OAOB的“等距点”.①当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由;②若点P内,请直接写出满足条件的m的取值范围.2、已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点AB的坐标. (2)画出函数的图象.(3)求△AOB的面积.3、如图1,A(﹣2,6),C(6,2),ABy轴于点BCDx轴于点D(1)求证:△AOB≌△COD(2)如图2,连接ACBD交于点P,求证:点PAC中点;(3)如图3,点E为第一象限内一点,点Fy轴正半轴上一点,连接AFEFEFCEEFCE,点GAF中点.连接EGEO,求证:∠OEG=45°.4、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB(1)求两个函数的解析式;(2)求△AOB的面积.5、甲、乙两人在某天不约而同的进行一次徒步活动,已知AB两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:(1)求yy关于x的函数表达式;(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;(3)甲出发_______小时后,甲、乙两人相距5千米. -参考答案-一、单选题1、A【解析】【分析】由正比例函数的图象经过一、三象限,可以知道,由此,从而得到一次函数图象情况.【详解】解:∵正比例函数ykx的图象经过一、三象限∴一次函数的图象经过一、二、四象限故选:A【点睛】本题考查一次函数图象,熟记相关知识点并能灵活应用是解题关键.2、A【解析】【分析】用待定系数法求出函数解析式,即可求出ab的值,进而可求出代数式的值.【详解】解:把点(01)和(13)代入yax+b,得:解得ba12=﹣1故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.3、C【解析】【分析】根据点Axy)在第四象限,判断xy的范围,即可求出B点所在象限.【详解】∵点Axy)在第四象限,x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣xy﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、B【解析】【分析】由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.【详解】解:由图象可知,当x>0时,y<0,ax<0,a<0;x=b时,函数值不存在,xb,结合图象可以知道函数的x取不到的值大概是在1的位置,b>0.故选:B.【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.5、D【解析】【详解】解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;B、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;C、对于的每一个确定的值,都有唯一确定的值与其对应,所以的函数,此项不符题意;D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;故选:D.【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,的函数)是解题关键.6、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.7、D【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】解:∵x-3≥0,x≥3,x-4≠0,x≠4,综上,x≥3且x≠4,故选:D.【点睛】主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论.【详解】解:∵直线y=﹣x+b中,k=﹣<0,y将随x的增大而减小.∵﹣4<2,y1y2故选:A.【点睛】本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+bk≠0),当k>0,yx增大而增大;当k<0时,y将随x的增大而减小.9、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.10、D【解析】【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.二、填空题1、b【解析】【分析】联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.【详解】解:联立解得∵交点在第二象限,解不等式①得:解不等式②得:的取值范围是故答案为:【点睛】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.2、【解析】【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3、【解析】【分析】根据统计表确定两个函数的的交点,然后判断即可.【详解】解:根据表可得一次函数y1axby2mxn的交点坐标是(2,1).故可得关于x的方程axmxnb的解是故答案为:【点睛】本题考查了一次函数的性质,正确确定交点坐标是关键.4、【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..5、 (4,2)或(-4,2) ##(-4,2)或(4,2)【解析】【分析】根据点的坐标确定OAOB的长,然后利用全等可分析点的位置,最后分情况解答即可.【详解】解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),OA=4,OB=2,∠AOB=90°∵△CBO≌△AOBCB= OA =4,OB=OB=2,∵点轴上方∴当点C在第一象限时,C点坐标为(4,2)当点C在第二象限时,C点坐标为(-4,2)C的坐标可以为(4,2)或(-4,2).故填(4,2)或(-4,2).【点睛】本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.三、解答题1、(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②【解析】【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P是线段OAOB的“等距点”,可设点Pxx)且x>0,再由点P是点A和点C的“等距点”,可得 ,从而得到 ,即可求解;②根据点P是线段OAOB的“等距点”, 点P在∠AOB的角平分线上,可设点Paa)且a>0,根据OA=OB,可得OP平分线段AB,再由点P内,可得 ,根据点P是点A和点C的“等距点”,可得 ,从而得到,整理得到,即可求解.【详解】解:(1)根据题意得:∴点是点A和点O的“等距点”;(2)根据题意得:线段OAx轴上,线段OBy轴上,∴点到线段OA的距离为1,到线段OB的距离为2,到线段OA的距离为2,到线段OB的距离为2,到线段OA的距离为6,到线段OB的距离为3,∴点到线段OA的距离和到线段OB的距离相等,∴点是线段OAOB的“等距点”;(3)①存在,点P的坐标为(7,7),理由如下:∵点P是线段OAOB的“等距点”,且线段OAx轴上,线段OBy轴上,∴可设点Pxx)且x>0,∵点P是点A和点C的“等距点”,∵点C(8,0),解得:∴点P的坐标为(7,7);②如图,∵点P是线段OAOB的“等距点”,且线段OAx轴上,线段OBy轴上,∴点P在∠AOB的角平分线上,可设点Paa)且a>0,OA=OB=6,OP平分线段AB∵点P内,∴当点P位于AB上时, 此时点PAB的中点,∴此时点P的坐标为 ,即∵点P是点A和点C的“等距点”,∵点整理得: 时,点C(6,0),此时点CA重合,则a=6(不合题意,舍去),时,,解得:即若点P内,满足条件的m的取值范围为【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.2、(1)A(2,0)B(0,4);(2)见解析;(3)SAOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点AB的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;x=0时,y=-2×0+4=4,∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)SAOB=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出AB的坐标.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据即可证明(2)过点轴,交于点,得出,由平行线的性质得,由轴得,由,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长,使,连接,延长于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点轴于点(2) 如图2,过点轴,交于点轴,中,,即点中点;(3) 如图3,延长,使,连接,延长于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.4、(1)y=x;(2)7.5【解析】【分析】(1)根据A的坐标先求出正比例函数的解析式,再根据已知条件求出点B的坐标,进而可得一次函数解析式;(2)由A点坐标可求得Ay轴的距离,根据三角形面积公式可求得S【详解】解:(1)∵A(3,4),OA=OB= OA=5B(-5,0)设正比例函数的解析式为y=mx,∵正比例函数的图象过A(3,4)∴4=3mm=∴正比例函数的解析式为y=x设一次函数的解析式为y=kx+b∵过A(3,4)、B(-5,0)解得:∴一次函数的解析式为(2)∵A(3,4),B(-5,0),∴三角形AOB的面积为5×3×=7.5.【点睛】主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.5、(1)y=-5x+10,y=4x-2;(2)相遇时甲离B地为km;(3)【解析】【分析】(1)找出直线l1l2经过的两点坐标,两用待定系数法求出直线解析式即可;(2)联立方程组,求出方程组的解即可;(3)分相遇前和相遇后相距5千米列出方程求解即可.【详解】解:(1)设直线l1的解析式为 ∵直线l1过点(2,0),(0,10)∴代入解析式得, 解得, ∴直线l1的解析式为设直线l2的解析式为∵直线l2过点(0.5,0),(3,10)∴代入解析式得, 解得, ∴直线l2的解析式为(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得4(x-0.5)+5x=10,解得xx时,y=-5×+10=∴相遇时甲离B地为km.故答案为:(3)由题意知:①或②解得,所以,甲出发小时后,甲、乙两人相距5千米.故答案为:【点睛】本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了已知点,若一次函数y=kx+b等内容,欢迎下载使用。

    2021学年第十四章 一次函数综合与测试同步练习题:

    这是一份2021学年第十四章 一次函数综合与测试同步练习题,共21页。试卷主要包含了已知一次函数y=ax+b,已知点A等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共22页。试卷主要包含了一次函数y=,一次函数的一般形式是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map