数学北京课改版第十四章 一次函数综合与测试课时作业
展开
这是一份数学北京课改版第十四章 一次函数综合与测试课时作业,共29页。试卷主要包含了函数的图象如下图所示,下列命题中,真命题是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
2、下面哪个点不在函数的图像上( ).
A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
3、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是( )
A. B. C. D.
4、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
5、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
6、下列命题中,真命题是( )
A.若一个三角形的三边长分别是a、b、c,则有
B.(6,0)是第一象限内的点
C.所有的无限小数都是无理数
D.正比例函数()的图象是一条经过原点(0,0)的直线
7、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
8、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )
A.正东方向 B.正西方向 C.正南方向 D.正北方向
9、已知为第四象限内的点,则一次函数的图象大致是( )
A. B.
C. D.
10、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
2、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:
华氏温度(℉)
50
68
86
104
……
212
摄氏温度(℃)
10
20
30
40
……
m
(1)m=______;
(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.
3、一次函数y=kx+b(k≠0)中两个变量x、y的部分对应值如下表所示:
x
…
-2
-1
0
1
2
…
y
…
8
5
2
-1
-4
…
那么关于x的不等式kx+b≥-1的解集是________.
4、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.
5、已知点M坐标为,点M到x轴距离为______.
三、解答题(5小题,每小题10分,共计50分)
1、在同一直角坐标系内画出正比例函数y=-2x与y=0.5x的图象.
2、综合与探究:
如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.
(1)求A,B两点的坐标;
(2)求直线BC的表达式,并直接写出点C的坐标;
(3)请从A,B两题中任选一题作答.我选择 题.
A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;
B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.
3、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,
(1)求点D的坐标和AB的长;
(2)若△BDE≌△AFE,求点E的坐标;
(3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
4、阅读下列一段文字,然后回答问题.
已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.
(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;
(2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.
(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.
5、张明和爸爸一起出去跑步,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张明继续前行,5分钟后也原路返回,两人恰好同时到家.张明和爸爸在整个过程中离家的路程(米),(米)与运动时间(分)之间的函数关系如图所示.
(1)的值为______;
(2)张明开始返回时与爸爸相距______米;
(3)第______分钟吋,两人相距900米.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
2、D
【解析】
【分析】
将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.
【详解】
解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;
B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;
C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;
D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.
3、B
【解析】
【分析】
由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.
【详解】
解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),
∴关于x,y的二元一次方程组的解是.
故选B.
【点睛】
本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.
4、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
5、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
6、D
【解析】
【分析】
根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
【详解】
解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
C、无限不循环小数都是无理数,
D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
故选:D
【点睛】
本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
7、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
8、B
【解析】
【分析】
根据二人向同一方向走的距离可知二人的方向关系,解答即可.
【详解】
解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.
【点睛】
本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.
9、A
【解析】
【分析】
根据为第四象限内的点,可得 ,从而得到 ,进而得到一次函数的图象经过第一、二、三象限,即可求解.
【详解】
解:∵为第四象限内的点,
∴ ,
∴ ,
∴一次函数的图象经过第一、二、三象限.
故选:A
【点睛】
本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.
10、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
二、填空题
1、 (4,2)或(-4,2) ##(-4,2)或(4,2)
【解析】
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
2、 100 a=32+1.8b
【解析】
【分析】
(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;
(2)由表格数据规律,得到华氏温度=摄氏温度+32,据此解题.
【详解】
解:(1)设华氏温度与摄氏温度满足的一次函数关系为:
代入(10,50)(20,68)得
当时,
故答案为:100;
(2)由(1)得,华氏温度=摄氏温度+32,
若华氏温度为a,摄氏温度为b,
则把摄氏温度转化为华氏温度的公式为:a= +32,
故答案为:a=32+1.8b.
【点睛】
本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.
3、x≤1
【解析】
【分析】
由表格得到函数的增减性后,再得出时,对应的的值即可.
【详解】
解:当时,,
根据表可以知道函数值y随的增大而减小,
∴不等式的解集是.
故答案为:.
【点睛】
此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.
4、x>1
【解析】
【分析】
利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.
【详解】
解:由图可知:不等式kx>﹣x+3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x>1.
故此不等式的解集为x>1.
故答案为:x>1.
【点睛】
本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.
5、7
【解析】
【分析】
根据点(x,y)到x轴的距离等于|y|求解即可.
【详解】
解:点M 到x轴距离为|-7|=7,
故答案为:7.
【点睛】
本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.
三、解答题
1、见祥解
【解析】
【分析】
利用两点确定一条直线,通过描点法画出直线即可.
【详解】
解:经过(0,0)和(1,-2)两个点可以画出函数y=-2x的图象;
经过(0,0)和(1,0.5)两个点可以画出函数y=0.5x的图象.如图所示:
【点睛】
本题考查了正比例函数和一次函数的图象的画法,利用两点画图是解题的关键.
2、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【解析】
【分析】
(1)根据坐标轴上点的坐标特征求A点和B点坐标;
(2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;
(3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.
B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.
【详解】
解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);
当x=0时,y=x+3=3,则B点坐标为(0,3);
(2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,
∴直线BC的表达式为y=﹣x+3,
当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);
(3)A.过点P作PH⊥x轴于H,
设点P(x,x+3),
∴PH=,
∵A点坐标为(﹣6,0),C点坐标(3,0),
∴AC=9,
∵S△ACP=AC•PH=×9•PH=18,
∴PH=4,
∴x+3=±4,
当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,
∴存在,点P的坐标为(2,4)或(﹣14,﹣4);
B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.
设点P(x,x+3),则Q(x,﹣x+3),
∴PQ=,
∵B点坐标(0,3),C点坐标(3,0),
∴OB=OC=3,
∴BC=,
∵PQ=BC,
∴,解得:x=或﹣,
∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
【点睛】
此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
3、(1)(-4,4),AB= ;(2)(-1,2);(3)(, )、(-6, )、(14,-8)、(2,0)
【解析】
【分析】
(1)分别令一次函数解析式中的x=0、y=0,求出y、x,据此可得点A、B的坐标,求出AB的值,由正方形的性质可得点D的坐标;
(2)由全等三角形的性质可得AF=BD=4,求出直线DF的解析式,然后联立直线AB的解析式可得点E的坐标;
(3)分情况讨论:当点P在线段BD上时,利用函数解析式可求出点F的坐标,可证得AF=AP,可知点Q与点F重合,即可得到点Q的坐标;如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,易证△APH≌△PMQ,BH=2=AO,利用全等三角形的性质可证得QM=HP,AH=PM=4,利用函数解析式表示出点Q(a,),可表示出MQ,PH的长,根据PB的长,建立关于a的方程,解方程取出a的值,然后求出点Q的纵坐标,即可得到点Q的坐标;如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,设点Q(a,),易证△PHQ≌△APM,利用全等三角形的性质分别表示出BH,OM的长QH的长,根据QH的长建立关于a的方程,解方程求出a的值,即可得到点Q的坐标.
【详解】
解:(1)一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,
令x=0,y=4;y=0,x=-2
∴点A、B的坐标分别为:(-2,0)、(0,4),
∴OA=2,OB=4
由勾股定理得,AB= ,
∵四边形BOCD是正方形
∴BD=OB=CD=OC=4,
∴D的坐标为(-4,4)
(2)解:∵△BDE≌△AFE,
∴AF=BD=4,
∴OF=2
∴F(2,0),
设直线DF的解析式为
把D(-4,4),F(2,0)代入得,
解得,
∴直线DF的解析式为
联立方程组
解得,
∴点E的坐标为(-1,2)
(3)如图,
当点P在线段BD上时
∵点A(-2,0),点F(2,0)
∴AF=2-(-2)=4,
当点Q与点F重合时,DA⊥BD于点P,
∴DA=AF=4,∠DAF=90°,
∴点Q(2,0);
如图,当点Q在DF的延长线上,∠APQ=90°时,过点Q作QM⊥BD于点M,过点A作HA⊥BD于点H,
易证△APH≌△PMQ,BH=2=AO
∴QM=HP,AH=PM=4,
设点Q(a,)
∴;
∴
解之:a=14
∴当a=14时,y==-8,
∴点Q(14,-8);
如图,当点Q在FD的延长线上时,∠QAP=90°,过点Q作QH⊥x轴于点H,过点P作PM⊥x轴于点M,
易证△AQH≌△APM,
∴QH=AM,PM=AH=4,
∵OA=2,
∴OH=4+2=6,
∴点P的横坐标为-6
当x=-6时y,
∴点Q;
如图,当点Q在FD的延长线上时,∠QPA=90°,过点Q作QH⊥BD于点H,过点P作PM⊥x轴于点M,
设点Q(a,)
易证△PHQ≌△APM,
∴PM=PH=4,AM=QH,
∴BH=-a,OM=-a-4,
∴AM=QH=2-(-a-4)=a+6,QH=
∴
解之:
∴
∴点Q
∴点Q的坐标为:或或(14,-8)或(2,0).
【点睛】
本题属于一次函数综合题,考查了两一次函数图象相交或平行问题,三角形全等及其性质,正方形的性质,一次函数图象与坐标轴交点问题,等腰直角三角形等知识,解题的关键是熟练掌握基本知识.
4、(1)5;(2)能,理由见解析;(3)134,0,73
【解析】
【分析】
(1)根据文字提供的计算公式计算即可;
(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;
(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.
【详解】
(1)∵A、B两点在平行于y轴的直线上
∴AB=4-(-1)=5
即A、B两点间的距离为5
(2)能判定△DEF的形状
由两点间距离公式得:DE=(-2-1)2+(2-6)2=5,
DF=(4-1)2+(2-6)2=5,EF=4-(-2)=6
∵DE=DF
∴△DEF是等腰三角形
(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小
由对称性知:点G的坐标为(4,-2),且PG=PF
∴PD+PF=PD+PG≥DG
即PD+PF的最小值为线段DG的长
设直线DG的解析式为y=kx+b(k≠0),把D、G的坐标分别代入得:k+b=64k+b=-2
解得:k=-83b=263
即直线DG的解析式为y=-83x+263
上式中令y=0,即-83x+263=0,解得x=134
即点P的坐标为134,0
由两点间距离得:DG=DG=(4-1)2+(-2-6)2=9+64=73
所以PD+PF的最小值为73
【点睛】
本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
5、(1)3000;(2)1500;(3)18或30
【解析】
【分析】
(1)根据一次函数图象,两人同时从家出发后的速度一致,根据张明的路程除以时间即可求得速度,根据题意m=15,即可求得的值;
(2)根据(1)中的值代入函数解析式,求得,根据图象求得,根据题意求得当x=20时,y1-y2的值即可求解;
(3)分两种情况讨论,①当张明的爸爸返回时,张明继续跑,和张明返回时,②根据(2)的结论令y1-y2=900,解方程即可求解
【详解】
解:(1)∵4000÷20=200米每分钟
根据题意张明继续前行,5分钟后也原路返回,
∴m=20-5=15
∴n=15×200=3000
故答案为:3000;
(2)设y1=ax+c,y2=kx+b
将20,4000,45,0代入,将点15,3000,45,0代入,
得20a+c=400045a+c=0,15k+b=300045k+b=0
解得a=-160c=7200,k=-100b=4500
∴y1=-160x+7200,y2=-100x+4500
根据题意x=20时,y1-y2=-160×20+7200--100×20+4500
=4000-2500=1500(米)
故答案为:1500;
(3)①当张明的爸爸返回时,张明继续跑,和张明返回时,设两人从家出发,至20分钟返回时的解析式为y=ax,将20,4000代入,即4000=20a
解得a=200
即y=200x
200x--100x+4500=900
解得x=18
②两人都返回时,则y1-y2=900
∴-160x+7200--100x+4500=900
解得x=30
第30分钟时,两人相距900米
故答案为:18或30
【点睛】
本题考查了一次函数的应用,根据函数图象获取信息是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题,共35页。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共24页。试卷主要包含了已知函数和 的图象交于点P,一次函数y=mx﹣n等内容,欢迎下载使用。