终身会员
搜索
    上传资料 赚现金

    精品试卷京改版八年级数学下册第十四章一次函数综合测试练习题(名师精选)

    立即下载
    加入资料篮
    精品试卷京改版八年级数学下册第十四章一次函数综合测试练习题(名师精选)第1页
    精品试卷京改版八年级数学下册第十四章一次函数综合测试练习题(名师精选)第2页
    精品试卷京改版八年级数学下册第十四章一次函数综合测试练习题(名师精选)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题,共35页。


    京改版八年级数学下册第十四章一次函数综合测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若点在第三象限,则点在( ).
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为(  )

    A. B. C. D.
    3、已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是( )
    A.m≤﹣ B.m≥﹣ C.m<﹣ D.m>
    4、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
    时间/分钟
    0
    5
    10
    15
    20
    25
    温度/℃
    10
    25
    40
    55
    70
    85
    若温度的变化是均匀的,则18分钟时的温度是( )
    A.62℃ B.64℃ C.66℃ D.68℃
    5、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    6、下列关于变量x,y的关系,其中y不是x的函数的是(  )
    A. B.
    C. D.
    7、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是(  )

    A.关于x的不等式ax+b>0的解集是x>2
    B.关于x的不等式ax+b<0的解集是x<2
    C.关于x的方程ax+b=0的解是x=4
    D.关于x的方程ax+b=0的解是x=2
    8、
    9、在平面直角坐标系中,已知点P(5,−5),则点P在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10、一次函数y=kx+b的图象如图所示,则下列说法错误的是(  )

    A.y随x的增大而减小
    B.k<0,b<0
    C.当x>4时,y<0
    D.图象向下平移2个单位得y=﹣x的图象
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是_________

    2、对于直线y=kx+b(k≠0):
    (1)当k>0,b>0时,直线经过第______象限;
    (2)当k>0,b<0时,直线经过第______象限;
    (3)当k<0,b>0时,直线经过第______象限;
    (4)当k<0,b<0时,直线经过第______象限.
    3、在平面直角坐标系中,A(2,2)、B(3,﹣3),若一次函数y=kx﹣1与线段AB有且只有一个交点,则k的取值范围是___.
    4、如图,在平面直角坐标系中,,点,的坐标分别是,,则点的坐标是______.

    5、在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx>﹣x+3的解集是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
    (1)在图中作出DEF,使得DEE与ABC关于x轴对称;
    (2)写出D,E两点的坐标:D ,E .
    (3)求DEF的面积.

    2、如图,在平面直角坐标系中,点O为坐标原点,点A在y轴上,点B,C在x轴上,,,.
    (1)求线段AC的长;
    (2)点P从C点出发沿射线CA以每秒2个单位长度的速度运动,过点A作,点F在y轴的左侧,,过点F作轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;
    (3)在(2)的条件下,直线BP交y轴于点K,,当时,求t的值,并求出点P的坐标.

    3、综合与探究:
    如图1,平面直角坐标系中,一次函数y=x+3图象分别交x轴、y轴于点A,B,一次函数y=﹣x+b的图象经过点B,并与x轴交于点C点P是直线AB上的一个动点.
    (1)求A,B两点的坐标;
    (2)求直线BC的表达式,并直接写出点C的坐标;
    (3)请从A,B两题中任选一题作答.我选择    题.
    A.试探究直线AB上是否存在点P,使以A,C,P为顶点的三角形的面积为18?若存在,求出点P的坐标;若不存在,说明理由;
    B.如图2,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.试探究直线AB上是否存在点P,使PQ=BC?若存在,求出点P的坐标;若不存在,说明理由.

    4、在平面直角坐标系中,,且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:

    (1)如图1,若,求的面积;
    (2)如图1,若,且,求D点的坐标;
    (3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;
    5、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据第三象限点的横坐标与纵坐标都是负数,然后判断点Q所在的象限即可.
    【详解】
    ∵点P(m,n)在第三象限,
    ∴m<0,n<0,
    ∴-m>0,-n>0,
    ∴点在第一象限.
    故选:A.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    2、D
    【解析】
    【分析】
    由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
    【详解】
    解:∵一次函数y=-x+2中,
    令x=0得:y=2;令y=0,解得x=5,
    ∴B的坐标是(0,2),A的坐标是(5,0).
    若∠BAC=90°,如图1,作CE⊥x轴于点E,
    ∵∠BAC=90°,
    ∴∠OAB+∠CAE=90°,
    又∵∠CAE+∠ACE=90°,
    ∴∠ACE=∠BAO.
    在△ABO与△CAE中,,
    ∴△ABO≌△CAE(AAS),
    ∴OB=AE=2,OA=CE=5,
    ∴OE=OA+AE=2+5=7.
    则C的坐标是(7,5).
    设直线BC的解析式是y=kx+b,
    根据题意得:,解得,
    ∴直线BC的解析式是y=x+2.
    故选:D.

    【点睛】
    本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
    3、C
    【解析】
    【分析】
    利用一次函数的参数的正负与函数增减性的关系,即可求出m的取值范围.
    【详解】
    解:函数值y随自变量x的增大而减小,那么1+2m<0,
    解得m<.
    故选:C.
    【点睛】
    本题主要是考查了一次函数的值与函数增减性的关系,,一次函数为减函数,,一次函数为增函数,掌握两者之间的关系,是解决该题的关键.
    4、B
    【解析】
    【分析】
    根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
    【详解】
    解:根据图表可得:温度与时间的关系符合一次函数关系式,
    设温度T与时间x的函数关系式为:,将,,代入解析式可得:

    解得:,
    ∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
    当时,

    故选:B.
    【点睛】
    题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
    5、A
    【解析】
    【分析】
    先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
    【详解】
    解:∵一次函数y=mx+n的图象经过第一、二、四象限,
    ∴m<0,n>0
    ∴y随x增大而减小,
    ∵1<3,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.
    6、D
    【解析】
    【详解】
    解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
    故选:D.
    【点睛】
    本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
    7、D
    【解析】
    【分析】
    直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.
    【详解】
    解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;
    B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;
    C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;
    D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;
    故选:D.
    【点睛】
    本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.
    8、C
    【解析】
    【分析】
    根据第三象限内点的坐标横纵坐标都为负的直接可以判断
    【详解】
    解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
    故选C
    【点睛】
    本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
    9、D
    【解析】
    【分析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.
    故选:D.
    【点睛】
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    10、B
    【解析】
    【分析】
    由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
    【详解】
    解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
    一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
    由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
    由函数图象经过
    ,解得:
    所以一次函数的解析式为:
    把向下平移2个单位长度得:,故D不符合题意;
    故选B
    【点睛】
    本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
    二、填空题
    1、(,2)
    【解析】
    【分析】
    先求出的长度,然后分别求出点的坐标为(2,2),点的坐标为(,2),点的坐标为(,0),即可得到观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,由此求解即可.
    【详解】
    解:∵A(2,0),B(0,2),
    ∴OA=BA=2,∠AOB=90°,
    ∴的长度,
    ∵将扇形AOB沿x轴正方形做无滑动的滚动,
    ∴,,
    ∴点的坐标为(2,2),
    ∴点的坐标为(,2),
    ∴点的坐标为(,0),
    ∴观察图形可知,O点坐标变化三次后回到x轴正半轴,每个回到x轴横坐标增加,
    ∵10÷3=3余3,
    ∴点的坐标为(,2),即(,2),
    故答案为:(,2).
    【点睛】
    本题主要考查了点的坐标规律探索,求弧长,解题的关键在于能够根据题意找到规律求解.
    2、 一、二、三 一、三、四 一、二、四 二、三、四
    【解析】
    【分析】
    当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.
    【详解】
    (1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;
    故答案为:一、二、三
    (2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;
    故答案为:一、三、四
    (3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;
    故答案为:一、二、四
    (4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.
    故答案为:二、三、四
    【点睛】
    本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.
    3、﹣≤k≤
    【解析】
    【分析】
    把A点和B点坐标分别代入计算出对应的k的值,然后利用一次函数图象与系数的关系确定k的范围.
    【详解】
    把A(2,2)代入y=kx﹣1得2k﹣1=2,解得k=;
    把B(3,﹣3)代入y=kx﹣1得3k﹣1=﹣3,解得k=﹣,
    所以当一次函数y=kx﹣1与线段AB只有一个交点时,﹣≤k≤.
    即k的取值范围为﹣≤k≤.
    故答案为:﹣≤k≤.
    【点睛】
    本题主要考查了一次函数图象,掌握一次函数图象与系数的关系成为解答本题的关键.
    4、
    【解析】
    【分析】
    如图,过作于 证明轴,则轴, 再利用等腰三角形的性质求解 利用勾股定理求解 从而可得答案.
    【详解】
    解:如图,过作于


    轴,则轴,





    故答案为:
    【点睛】
    本题考查的是等腰三角形的性质,坐标与图形,勾股定理的应用,掌握“坐标与线段长度的关系”是解本题的关键.
    5、x>1
    【解析】
    【分析】
    利用函数与不等式的关系,找到正比例函数高于一次函数图像的那部分对应的自变量取值范围,即可求出解集.
    【详解】
    解:由图可知:不等式kx>﹣x+3,正比例函数图像在一次函数上方的部分,对应的自变量取值为x>1.
    故此不等式的解集为x>1.
    故答案为:x>1.
    【点睛】
    本题主要是考查了一次函数与不等式,熟练地应用函数图像求解不等式的解集,培养数形结合的能力,是解决该类问题的要求.
    三、解答题
    1、最大588cm
    故答案为3,588.
    (5)
    根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;
    当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,
    当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,
    当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,
    当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.
    因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.
    【点睛】
    本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.
    2.(1)直线的解析式为;(2);(3)或.
    【解析】
    【分析】
    (1)在中,利用勾股定理确定,由对称设,,,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;
    (2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;
    (3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,,
    利用全等三角形的判定及性质可得,,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可.
    【详解】
    解:(1),
    ,即,
    又,

    设直线的解析式为,将点代入得,
    直线的解析式为.
    在中,,
    点、点关于直线对称,
    设,,,

    在中,,


    将点B代入
    直线的解析式为;
    (2)由(1)得,BC=OB=3,如图所示:

    ∵O点关于直线AB的对称点C点在直线AD上,
    ∴,
    ∴,
    使,
    则设点,
    两个三角形的高均为线段OA长度,使底相同即:

    解得:或(舍去),
    ∴;
    (3)如图,设若直线、与直线夹角等于,

    即为等腰直角三角形,作于,于,
    ∴,,
    ∵,
    ∴,
    ∵,
    ∴,
    在与中,

    ∴,
    ,,
    直线过,
    即,解得:,
    直线的解析式为:,
    设坐标为,则,,,
    由线段间的关系可得:
    点坐标为,
    点在直线上,

    解得:,
    ,,
    当直线过点时,,解得:;
    当直线过点时,,解得:;
    所以或.
    【点睛】
    本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键.
    3.(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
    【解析】
    【分析】
    (1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
    (2)根据△DEF的位置,即可得出D,E两点的坐标;
    (3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
    【详解】
    解:(1)如图所示,△DEF即为所求;

    (2)由图可得,D(﹣1,﹣4),E(﹣4,1);
    故答案为:(﹣1,﹣4),(﹣4,1);
    (3),
    ∴面积为9.5.
    【点睛】
    题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
    2、(1)8,(2)见解析,(3)(,)或(,);
    【解析】
    【分析】
    (1)根据30°角所对直角边等于斜边一半,求出OA长,即可求AC长;
    (2)作PG⊥OA于G,证△AFE≌△PAG,得出,用含t的式子表示AG的长即可;
    (3)作PN⊥OB于N,证Rt△BOK≌Rt△AOC,得出,求出AP的长即可求t的值,求出NP、ON的长即可求坐标.
    【详解】
    解:(1)∵,,
    ∴,
    ∵,,
    ∴;
    (2)作PG⊥OA于G,当点P在线段CA上时,CP=2t,AP=8-2t,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴△AFE≌△PAG,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;

    当点P在线段CA延长线上时,CP=2t,AP=2t -8,
    同理可得△AFE≌△PAG,


    (3)作PN⊥OB于N,
    如图,∵,,,
    ∴Rt△BOK≌Rt△AOC,
    ∴, ,
    ∵,
    ∴,
    ∴,
    此时,点P在线段CA延长线上,
    ∴,

    ∵,
    ∴,
    ∵PN⊥OB,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    点P的坐标为(,)

    如图,同理可知Rt△BOK≌Rt△AOC,

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,


    同理可得,,,,
    点P的坐标为(,);
    综上,点P的坐标为(,)或(,);

    【点睛】
    本题考查了全等三角形的判定与性质,含30°角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系.
    3、(1)(﹣6,0),(0,3);(2)y=﹣x+3,(3,0);(3)选A,存在,点P的坐标为(2,4)或(﹣14,﹣4);选B,存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
    【解析】
    【分析】
    (1)根据坐标轴上点的坐标特征求A点和B点坐标;
    (2)将B点坐标(0,3)代入一次函数y=−x+b即可求解;
    (3)A.过点P作PH⊥x轴于H,设点P(x,x+3),则PH=,根据S△ACP=AC•PH=18可得PH的值,即可求解.
    B.过点P作x轴的垂线,交直线BC于点Q,垂足为点H.设点P(x,x+3),则Q(x,−x+3),根据PQ=BC列方程求解即可.
    【详解】
    解:(1)当y=0时,x+3=0,解得x=﹣6,则A点坐标为(﹣6,0);
    当x=0时,y=x+3=3,则B点坐标为(0,3);
    (2)将B点坐标(0,3)代入一次函数y=﹣x+b得:b=3,
    ∴直线BC的表达式为y=﹣x+3,
    当y=0时,﹣x+3=0,解得x=3,则C点坐标为(3,0);
    (3)A.过点P作PH⊥x轴于H,

    设点P(x,x+3),
    ∴PH=,
    ∵A点坐标为(﹣6,0),C点坐标(3,0),
    ∴AC=9,
    ∵S△ACP=AC•PH=×9•PH=18,
    ∴PH=4,
    ∴x+3=±4,
    当x+3=4时,x=2;当x+3=﹣4时,x=﹣14,
    ∴存在,点P的坐标为(2,4)或(﹣14,﹣4);
    B.如图,过点P作x轴的垂线,交直线BC于点Q,垂足为点H.

    设点P(x,x+3),则Q(x,﹣x+3),
    ∴PQ=,
    ∵B点坐标(0,3),C点坐标(3,0),
    ∴OB=OC=3,
    ∴BC=,
    ∵PQ=BC,
    ∴,解得:x=或﹣,
    ∴存在,点P的坐标为(2,+3)或(﹣2,﹣+3).
    【点睛】
    此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.
    4、 (1)的面积为12;(2) D点的坐标为-2,0;(3) A,E两点之间的距离为.
    【解析】
    【分析】
    (1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;
    (2)根据题意判断出△CBD≅△DAE,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;
    (3)首先根据已知推出△DCB≅△ECA ,得到∠DBC=∠EAC=120°,进一步推出AE∥BC ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.
    【详解】
    解: (1) :∵a+b2+b+3=0,
    由非负性可知:a+b=0b+3=0 ,
    解得:a=3b=-3
    ∴A(3,0), B(-3,0), AB=3-(-3)=6,
    ∵ C(0,4),
    ∴OC=4,
    ∴S△ABC=12AB·OC=12×6×4=12;
    (2)由(1)知A(3,0), B(-3,0),
    ∴OA=OB,
    ∵OC⊥AB,
    ∴∠AOC=∠BOC=90°,
    在△AOC和△BOC中,
    OA=OB∠AOC=∠BOCOC=OC ,
    ∴△AOC≅△BOCSAS ,
    ∴∠CBO=∠CAO,
    ∵∠CDA=∠CDE +∠ADE=∠BCD+∠CBA,∠CBA=∠CDE,
    ∴∠ADE=∠BCD,
    在△BCD和△ADE中,
    ∠BCD=∠ADE∠CBD=∠DAEBD=AE ,
    ∴△BCD≅△ADEAAS,
    ∴CB= AD,
    ∵ B(-3,0), C(0,4),
    ∴OB=3,OC=4,
    ∴ BC=OB2+OC2=5 ,
    ∴AD=BC=5,
    ∵A(3,0),
    ∴D(-2,0);
    (3)由(2) 可知CB=CA,
    ∵∠CBA=60°,
    ∴△ABC为等边三角形,∠BCA=60°, ∠DBC=120°,
    ∵△CDE为等边三角形,
    ∴CD=CE,∠DCE=60°,
    ∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,
    ∴∠DCB=∠ECA,
    在△DCB和△ECA中,
    CD=CE∠DCB=∠ECACB=CA ,
    ∴△DCB≌△ECA( SAS),
    ∴∠DBC=∠EAC= 120°,
    ∵∠EAC+∠ACB= 120°+60°= 180°,
    ∴AE∥BC,
    即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,
    ∵要使得OE最短,
    ∴如图所示,当OE⊥PQ时,满足OE最短,此时∠OEA=90°,
    ∵∠DBC=∠EAC=120°,∠CAB=60°,
    ∴∠OAE=∠EAC-∠CAB=60°,∠AOE= 30°,
    ∵ A(3,0),
    ∴OA=3,
    ∴AE=12OA=32
    ∴当OE最短时,A,E两点之间的距离为.

    【点睛】
    本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键.
    5、东经116度,南纬38度可以表示为(116,38).
    【解析】
    【分析】
    根据“经度在前,纬度在后”的顺序,可以将东经116度,南纬38度用有序数对(116,38)表示.
    【详解】
    解:由题意可知东经116度,南纬38度,可用有序数对(116,38)表示.
    故东经116度,南纬38度表示为(116,38).
    【点睛】
    本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.

    相关试卷

    2020-2021学年第十四章 一次函数综合与测试测试题:

    这是一份2020-2021学年第十四章 一次函数综合与测试测试题,共23页。试卷主要包含了下列命题中,真命题是,在下列说法中,能确定位置的是,已知点A等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试习题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试习题,共22页。试卷主要包含了已知点A,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    2021学年第十四章 一次函数综合与测试当堂达标检测题:

    这是一份2021学年第十四章 一次函数综合与测试当堂达标检测题,共22页。试卷主要包含了如图,一次函数y=kx+b,一次函数y=,,两地相距80km,甲等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map