年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合训练试卷(含答案详解)

    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合训练试卷(含答案详解)第1页
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合训练试卷(含答案详解)第2页
    2022年最新精品解析京改版八年级数学下册第十四章一次函数综合训练试卷(含答案详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共24页。试卷主要包含了函数的图象如下图所示,,两地相距80km,甲,已知一次函数y=ax+b等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、点P的坐标为(﹣3,2),则点P位于(       A.第一象限 B.第二象限 C.第三象限 D.第四象限2、一次函数的一般形式是(kb是常数)(       A.y=kx+b B.y=kx C.y=kx+b(k≠0) D.y=x3、根据下列表述,能够确定具体位置的是(  )A.北偏东25°方向 B.距学校800米处C.温州大剧院音乐厅8排 D.东经20°北纬30°4、函数的图象如下图所示:其中为常数.由学习函数的经验,可以推断常数的值满足(       A. B.C. D.5、已知正比例函数ykx的函数值yx的增大而减小,则一次函数ykxk的图象大致是(  )A. B. C. D.6、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,AB两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示yx之间函数关系的图象是(  )A.  B.C.  D.7、两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是(       A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km8、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则18分钟时的温度是(       A.62℃ B.64℃ C.66℃ D.68℃9、已知一次函数yaxba≠0)的图象经过点(0,1)和(1,3),则ba的值为(       A.﹣1 B.0 C.1 D.210、若直线y=kx+b经过A(0,2)和B(3,-1)两点,那么这个一次函数关系式是(       A.y=2x+3 B.y=3x+2 C.y=-x+2 D.y=x-1第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,yx增大而增大.2、如图,已知A(6,0)、B(﹣3,1),点Py轴上,当y轴平分∠APB时,点P的坐标为_________.3、函数 的定义域是________.4、在平面直角坐标系中,A(2,2)、B(3,﹣3),若一次函数ykx﹣1与线段AB有且只有一个交点,则k的取值范围是___.5、已知函数y,那么自变量x的取值范围是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,点O为坐标原点,点Ay轴上,点BCx轴上,(1)求线段AC的长;(2)点PC点出发沿射线CA以每秒2个单位长度的速度运动,过点A,点Fy轴的左侧,,过点F轴,垂足为E,设点P的运动时间为t秒,请用含t的式子表示EF的长;(3)在(2)的条件下,直线BPy轴于点K,当时,求t的值,并求出点P的坐标.2、甲、乙两人在某天不约而同的进行一次徒步活动,已知AB两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:(1)求yy关于x的函数表达式;(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;(3)甲出发_______小时后,甲、乙两人相距5千米.3、已知函数y=(2-m)x+2n-3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?4、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?5、小美打算在“母亲节”买一束百合和康乃馨组合的鲜花送给妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且康乃馨不多于9支,设买康乃馨x支,买这束鲜花所需总费用为w元.①求wx之间的函数关系式;②请你帮小美设计一种使费用最少的买花方案,并求出最少费用. -参考答案-一、单选题1、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.2、C【解析】【分析】根据一次函数的概念填写即可.【详解】解:把形如y=kx+b((kb是常数,k≠0)的函数,叫做一次函数,故选:C.【点睛】本题考查了一次函数的概念,做题的关键是注意k≠0.3、D【解析】【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.4、B【解析】【分析】由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.【详解】解:由图象可知,当x>0时,y<0,ax<0,a<0;x=b时,函数值不存在,xb,结合图象可以知道函数的x取不到的值大概是在1的位置,b>0.故选:B.【点睛】本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.5、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数ykxk≠0)函数值随x的增大而减小,k<0,∴-k>0,∴一次函数ykxk的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.6、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤xxx≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,∴当0≤x时,y=120-60x-90x=-150x+120;x时,y=60(x-)+90(x-)=150x-120;x≤2是,y=60x由函数解析式的当x=时,y=150×-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.7、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、 ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答8、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式求解确定函数解析式,然后将代入求解即可得.【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,代入解析式可得:解得:温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,时,故选:B.【点睛】题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.9、A【解析】【分析】用待定系数法求出函数解析式,即可求出ab的值,进而可求出代数式的值.【详解】解:把点(01)和(13)代入yax+b,得:解得ba12=﹣1故选:A【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.10、C【解析】【分析】把两点的坐标代入函数解析式中,解二元一次方程组即可求得kb的值,从而求得一次函数解析式.【详解】解:由题意得:解得:故所求的一次函数关系为故选:C.【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式、代入、求值、求得解析式.二、填空题1、(答案不唯一)【解析】【分析】根据一次函数的性质,即可求解.【详解】解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1) 等.故答案为: (答案不唯一)【点睛】本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.2、【解析】【分析】y轴平分∠APB时,点A关于y轴的对称点A'在BP上,利用待定系数法求得A'B的表达式,即可得到点P的坐标.【详解】解:如图,当y轴平分∠APB时,点A关于y轴的对称点A'在BP上,A(6,0),A’ (-6,0),A'B的表达式为y=kx+bA’ (-6,0),B(﹣3,1)代入,可得解得x=0,则y=2,∴点P的坐标为(0,2),故答案为:(0,2).【点睛】本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键.3、x-1【解析】【分析】根据分母不为零,即可求得定义域.【详解】解:由题意, 故答案为:【点睛】本题考查了使函数有意义的自变量的取值范围,即函数的定义域,对于分母中含有未知数的函数解析式,必须考虑其分母不为零.4、﹣k【解析】【分析】A点和B点坐标分别代入计算出对应的k的值,然后利用一次函数图象与系数的关系确定k的范围.【详解】A(2,2)代入ykx﹣1得2k﹣1=2,解得kB(3,﹣3)代入ykx﹣1得3k﹣1=﹣3,解得k=﹣所以当一次函数ykx﹣1与线段AB只有一个交点时,﹣kk的取值范围为﹣k故答案为:﹣k【点睛】本题主要考查了一次函数图象,掌握一次函数图象与系数的关系成为解答本题的关键.5、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,解得,故答案为:【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.三、解答题1、(1)8,(2)见解析,(3)()或();【解析】【分析】(1)根据30°角所对直角边等于斜边一半,求出OA长,即可求AC长;(2)作PGOAG,证△AFE≌△PAG,得出,用含t的式子表示AG的长即可;(3)作PNOBN,证Rt△BOK≌Rt△AOC,得出,求出AP的长即可求t的值,求出NPON的长即可求坐标.【详解】解:(1)∵(2)作PGOAG,当点P在线段CA上时,CP=2tAP=8-2t∴△AFE≌△PAG当点P在线段CA延长线上时,CP=2tAP=2t -8,同理可得△AFE≌△PAG(3)作PNOBN如图,∵∴Rt△BOK≌Rt△AOC此时,点P在线段CA延长线上,PNOBP的坐标为(如图,同理可知Rt△BOK≌Rt△AOC同理可得,P的坐标为();综上,点P的坐标为()或();【点睛】本题考查了全等三角形的判定与性质,含30°角的直角三角形的性质,解题关键是恰当作辅助线,通过证明三角形全等,得出线段之间的关系.2、(1)y=-5x+10,y=4x-2;(2)相遇时甲离B地为km;(3)【解析】【分析】(1)找出直线l1l2经过的两点坐标,两用待定系数法求出直线解析式即可;(2)联立方程组,求出方程组的解即可;(3)分相遇前和相遇后相距5千米列出方程求解即可.【详解】解:(1)设直线l1的解析式为 ∵直线l1过点(2,0),(0,10)∴代入解析式得, 解得, ∴直线l1的解析式为设直线l2的解析式为∵直线l2过点(0.5,0),(3,10)∴代入解析式得, 解得, ∴直线l2的解析式为(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得4(x-0.5)+5x=10,解得xx时,y=-5×+10=∴相遇时甲离B地为km.故答案为:(3)由题意知:①或②解得,所以,甲出发小时后,甲、乙两人相距5千米.故答案为:【点睛】本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.3、(1)m≠2;(2)m≠2且n=【解析】【分析】(1)根据一次函数的定义得,2-m0,即可求得m的取值;(2)满足两个条件:2-m0且2n-3=0,即可得到mn的取值.【详解】(1)由题意得,2-m≠0,解得m≠2.(2)由题意得,2-m≠0且2n-3=0,解得m≠2且n=【点睛】本题考查了一次函数与正比例函数的定义,要注意两种函数既有联系又有区别.4、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.【解析】【分析】(1)根据图中的位置与方向即可确定.(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.5、(1)买一支康乃馨需4元,买一支百合需5元;(2)①w=﹣x+55;②买9支康乃馨,买2支百合费用最少,最少费用为46元.【解析】【分析】(1)设买一支康乃馨需m元,买一支百合需n元,根据题意列方程组求解即可;(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和康乃馨不多于9支求函数的最小值即可.【详解】解:(1)设买一支康乃馨需m元,买一支百合需n元, 则根据题意得:解得:答:买一支康乃馨需4元,买一支百合需5元; (2)①根据题意得:w=4x+5(11﹣x)=﹣x+55,②∵康乃馨不多于9支,x≤9,∵﹣1<0,wx的增大而减小,∴当x=9时,w最小,                                     即买9支康乃馨,买11﹣9=2支百合费用最少,wmin=﹣9+55=46(元),答:wx之间的函数关系式:w=﹣x+55,买9支康乃馨,买2支百合费用最少,最少费用为46元.【点睛】本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式. 

    相关试卷

    初中第十四章 一次函数综合与测试课后练习题:

    这是一份初中第十四章 一次函数综合与测试课后练习题,共25页。试卷主要包含了下列命题中,真命题是,点在第四象限,则点在第几象限等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试课后测评:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共26页。

    北京课改版八年级下册第十四章 一次函数综合与测试同步测试题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试同步测试题,共24页。试卷主要包含了已知一次函数y=ax+b,若一次函数y=kx+b,正比例函数y=kx的图象经过一等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map