终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练京改版八年级数学下册第十四章一次函数课时练习试题(无超纲)

    立即下载
    加入资料篮
    2022年强化训练京改版八年级数学下册第十四章一次函数课时练习试题(无超纲)第1页
    2022年强化训练京改版八年级数学下册第十四章一次函数课时练习试题(无超纲)第2页
    2022年强化训练京改版八年级数学下册第十四章一次函数课时练习试题(无超纲)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试课时训练

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时训练,共27页。试卷主要包含了在平面直角坐标系中,点P等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数课时练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列各图中,不能表示y是x的函数的是( )
    A. B.
    C. D.
    2、变量,有如下关系:①;②;③;④.其中是的函数的是( )
    A.①②③④ B.①②③ C.①② D.①
    3、在下列说法中,能确定位置的是( )
    A.禅城区季华五路 B.中山公园与火车站之间
    C.距离祖庙300米 D.金马影剧院大厅5排21号
    4、在平面直角坐标系中,点P(-2,3)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为(  )

    A.4个 B.3个 C.2个 D.1个
    6、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1y2,则k的值可能是( )
    A.k=0 B.k=1 C.k=2 D.k=3
    7、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是(  )
    A.(-2,3)或(-2,-3) B.(-2,3)
    C.(-3,2)或(-3,-2) D.(-3,2)
    8、在平面直角坐标系xOy中, 下列函数的图像过点(-1,1)的是( )
    A. B. C. D.
    9、关于函数有下列结论,其中正确的是( )
    A.图象经过点
    B.若、在图象上,则
    C.当时,
    D.图象向上平移1个单位长度得解析式为
    10、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2x<kx+b≤0的解集为( )

    A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
    2、函数的定义域是_____.
    3、在平面直角坐标系中,点A(1,4),B(4,2),C(m,﹣m).当以点A、B、C为顶点构成的△ABC周长最小时,m的值为______.
    4、如图,直线l:y=﹣x,点A1坐标为(﹣3,0).经过A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为_____.

    5、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据.
    x(厘米)
    1
    2
    4
    8
    y(斤)
    0.75
    1.00
    1.50
    2.5
    (1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?
    (2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?

    2、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
    (1)如图1,求点B、C的坐标;
    (2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
    (3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.

    3、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
    (1)请直接写出C、D两点的坐标:点C ,点D ;
    (2)当BF=BC时,连接FE.
    ①求点F的坐标;
    ②求此时△BEF的面积.

    4、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.
    (1)求每台A型电脑和B型电脑的销售利润;
    (2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
    ①求y关于x的函数关系式;
    ②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?
    5、甲、乙两人沿同一直道从A地去B地,甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.
    (1)求乙离A地的距离y2(单位:m)与时间x(单位:min)之间的函数关系式;并在图中画出乙离A地的距离y2(单位:m)与时间x(单位:min)之间的函数图象;
    (2)若甲比乙晚5min到达B地,求乙整个行程所用的时间.


    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
    【详解】
    解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
    B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
    C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
    D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
    故选:D
    【点睛】
    本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
    2、B
    【解析】
    【分析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.
    【详解】
    解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
    ②满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
    ③满足对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数;
    ④,当时,,则y不是x的函数;
    综上,是函数的有①②③.
    故选:B.
    【点睛】
    本题主要考查了函数的定义.在一个变化过程中,有两个变量x、y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数.
    3、D
    【解析】
    【分析】
    根据确定位置的方法逐一判处即可.
    【详解】
    解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;
    B、中山公园与火车站之间,没能确定准确位置,故不符合题意;
    C、距离祖庙300米,有距离但没有方向,故不符合题意;
    D、金马影剧院大厅5排21号,确定了位置,故符合题意.
    故选:D
    【点睛】
    本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.
    4、B
    【解析】
    【分析】
    根据点横纵坐标的正负分析得到答案.
    【详解】
    解:点P(-2,3)在第二象限,
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
    5、A
    【解析】
    【分析】
    由图象所给信息对结论判断即可.
    【详解】
    由图象可知当x=0时,甲、乙两人在A、B两地还未出发
    故A,B之间的距离为1200m
    故①正确
    前12min为甲、乙的速度和行走了1200m

    由图象可知乙用了24-4=20min走完了1200m



    故②正确
    又∵两人相遇时停留了4min
    ∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地
    则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米
    则b=800
    故③正确
    从24min开始为甲独自行走1200-800=400m
    则t=min
    故a=24+10=34
    故④正确
    综上所述①②③④均正确,共有四个结论正确.
    故选:A.
    【点睛】
    本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.
    6、A
    【解析】
    【分析】
    利用一次函数y随x的增大而减小,可得,即可求解.
    【详解】
    ∵当x1y2
    ∴一次函数y=(k)x+2的y随x的增大而减小


    ∴k的值可能是0
    故选:A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.
    7、A
    【解析】
    【分析】
    根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
    【详解】
    解:∵点P在y轴左侧,
    ∴点P在第二象限或第三象限,
    ∵点P到x轴的距离是3,到y轴距离是2,
    ∴点P的坐标是(-2,3)或(-2,-3),
    故选:A.
    【点睛】
    此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
    8、D
    【解析】
    【分析】
    利用x=-1时,求函数值进行一一检验是否为1即可
    【详解】
    解: 当x=-1时,,图象不过点,选项A不合题意;
    当x=-1时,,图象不过点,选项B不合题意;
    当x=-1时,,图象不过点,选项C不合题意;
    当x=-1时,,图象过点,选项D合题意;
    故选择:D.
    【点睛】
    本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键.
    9、D
    【解析】
    【分析】
    根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
    【详解】
    解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
    B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
    C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
    D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
    故选D.
    【点睛】
    本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
    10、B
    【解析】
    【分析】
    根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.
    【详解】
    解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),
    ∴不等式2x<kx+b的解集是x<-1,
    ∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),
    ∴不等式kx+b≤0的解集是x≥-2,
    ∴不等式2x<kx+b≤0的解集是-2≤x<-1,
    故选:B.
    【点睛】
    本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.
    二、填空题
    1、4
    【解析】
    【分析】
    根据点的坐标表示方法得到点P(3,﹣4)到x轴的距离是纵坐标的绝对值即|﹣4|,然后去绝对值即可.
    【详解】
    解:点P(3,-4)到x轴的距离为|﹣4|=4.
    故答案为:4.
    【点睛】
    此题主要考查了点到坐标上的距离,正确掌握点的坐标性质是解题关键.
    2、
    【解析】
    【分析】
    函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.
    【详解】
    解:根据题意得:3x+6≥0,
    解得x≥﹣2.
    故答案为:x≥﹣2.
    【点睛】
    本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    3、
    【解析】
    【分析】
    作B点关于直线y=﹣x的对称点B',连接AB',则有BC=B'C,所以△ABC周长最小值为AB+AB'的长,求出直线直线AB'的解析式为y=x+,联立方程组,可求C点坐标.
    【详解】
    解:∵C(m,﹣m),
    ∴点C在直线y=﹣x上,
    作B点关于直线y=﹣x的对称点B',连接AB',
    ∵BC=B'C,
    ∴BC+AC=B'C+AC≥AB',
    ∴△ABC周长=AB+BC+AC=AB+B'C+AC≥AB+AB',
    ∴△ABC周长最小值为AB+AB'的长,
    ∵B(4,2),
    ∴B'(﹣2,﹣4),
    ∵A(1,4),
    设直线AB'的解析式为y=kx+b,
    ∴,
    ∴,
    y=x+,
    联立方程组,
    解得,
    ∴C(﹣,),
    ∴m=﹣,
    故答案为:﹣.

    【点睛】
    本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键.
    4、(﹣,0)
    【解析】
    【分析】
    先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2021的坐标.
    【详解】
    解:∵点A1坐标为(﹣3,0),
    ∴OA1=3,
    在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),
    ∴由勾股定理可得OB1==5,即OA2=5=3×,
    同理可得,
    OB2=,即OA3==5×()1,
    OB3=,即OA4==5×()2,
    以此类推,
    OAn=5×()n﹣2=,
    即点An坐标为(﹣,0),
    当n=2021时,点A2021坐标为(﹣,0),
    故答案为:(﹣,0).

    【点睛】
    本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y=﹣x.
    5、
    【解析】
    【分析】
    根据“上加下减”的原则求解即可.
    【详解】
    解:将直线向下平移2个单位长度,所得的函数解析式为.
    故答案为:.
    【点睛】
    本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.
    三、解答题
    1、(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13
    【解析】
    【分析】
    (1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;
    (2)把把x=50代入解析式,求出最大物重即可确定范围.
    【详解】
    解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数,

    设x,y的函数关系式:y=kx+b,
    ∵当x=2时,y=1;x=4时,y=1.5;
    ∴,
    解得k=,b=,
    ∴x,y的函数关系式:y=x+,
    把x=16代入:y=x+,
    得y=4.5,
    ∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;
    (2)把x=50代入y=x+,
    得y=13,
    ∴0≤y≤13,
    ∴这杆秤的可称物重范围是0≤y≤13.
    【点睛】
    本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.
    2、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
    【解析】
    【分析】
    (1)根据平方的非负性,求得,即可求解;
    (2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
    (3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
    【详解】
    解:(1)∵
    ∴∵,
    ∴m-6=0,n-2=0
    ∴m=6,n=2
    ∴B(-6,0),C(2,0)
    (2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
    ∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
    ∴∠OAC=∠OBE
    ∴△OAC≌△OBE(AAS)
    ∴OC=OE=2


    ①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
    ②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
    (3)当t=6时,BP=12
    ∴OB=OP=6
    ①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
    ∴∠FME=∠FNP=90°
    ∵∠MFN=∠EFP=90°
    ∴∠MFE=∠NFP∵FE=FP

    ∴ME=NP,FM=FN
    ∴MO=ON
    ∴2+EM=6-NP
    ∴ON=4
    ∴F(4,4)
    ②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
    ∴∠FGE=∠FHP=90°
    ∵∠GFH=∠EFP=90°
    ∴∠GFE=∠HFP
    ∵FE=FP

    ∴FG=FH, GE=HP
    ∴HF=OG,FG=OH
    ∴2+OG=6-OH
    ∴OG=OH=2
    ∴F(2,-2)


    【点睛】
    此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
    3、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.
    【解析】
    【分析】
    (1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;
    (2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;
    ②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.
    【详解】
    解:(1)∵B(0 ,3),
    ∴OB=3,
    ∵OB=CD,且OD=2OC,
    ∴OC=1,OD=2,
    ∴C(-1 ,0),D(2 ,0);
    故答案为:(-1 ,0),(2 ,0);
    (2)①过点F作FP⊥轴于点P,

    ∵∠PBF=∠BCO,BF=BC,
    又∠FPB=∠BOC=90°,
    ∴△FPB≌△BOC(AAS),
    ∴FP=BO=3,PB= OC=1,
    ∴PO=4,
    ∴F(-3 ,4);
    ②过点F作FQ⊥BE于点Q,
    ∵∠CBO+∠BCO=90°,∠PBF=∠BCO,
    ∴∠CBO+∠PBF=90°,则∠CBF=90°,
    由折叠的性质得:∠EBC=∠OBC,EB=BO=3,
    ∴∠EBC +∠EBF=90°,
    ∴∠EBF=∠PBF,即FB是∠PBE的角平分线,
    又FQ⊥BE,FP⊥轴,
    ∴FQ= FP=3,
    ∴△BEF的面积为BEFQ=.
    【点睛】
    本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.
    4、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元
    【解析】
    【分析】
    (1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;
    (2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;
    ②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
    【详解】
    解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,
    根据题意得,,
    解得.
    ∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;
    (2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,
    据题意得,y=160x+240(100﹣x),
    即y=﹣80x+24000,
    ②∵100﹣x≤2x,
    ∴x≥33,
    ∵y=﹣80x+24000,
    ∴y随x的增大而减小,
    ∵x为正整数,
    ∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),
    即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
    5、(1)乙离A地的函数解析式为:,函数图象见详解;(2)甲整个行程所用的时间为.
    【解析】
    【分析】
    (1)根据甲乙的速度关系和甲比乙提前一分钟出发即可确定乙的函数图象经过两个点,点,点,设,将两个点代入求解即可确定函数解析式,连接两个点作图即可得函数图象;
    (2)设甲整个行程所用的时间为x ,由(1)可得:甲的速度为,乙的速度为,利用甲乙的路程相同建立方程,求解即可.
    【详解】
    解:(1)由图可得:甲的速度为:,
    ∵乙的速度是甲速度的两倍,
    ∴乙的速度为:,
    乙比甲晚出发,
    ∴乙经过点,点,
    设,将两个点代入可得:

    解得:,

    ∴乙离A地的函数解析式为:,
    连接点,点并延长即可得函数图象,如图所示即为所求;


    (2)设甲整个行程所用的时间为x,由(1)可得:甲的速度为,乙的速度为,
    ∴,
    解得:,
    ∴甲整个行程所用的时间为.
    【点睛】
    本题考查了一次函数的实际应用,根据问题情境绘制出函数图像,建立相等关系,列出方程是解题关键.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习题,共28页。试卷主要包含了若直线y=kx+b经过第一,已知点A等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试巩固练习,共24页。试卷主要包含了点在等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习,共22页。试卷主要包含了一次函数y=mx﹣n,一次函数的一般形式是,已知点P,若点在第三象限,则点在.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map