北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点在,一次函数y=mx﹣n等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
2、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )
A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)
3、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )
A. B. C. D.
5、点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
7、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
8、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )
A.y0 C.y3
9、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
10、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
2、(1)一次函数y=kx+b(k≠0)的图象经过点(0,b).当k>0时,y的值随着x值的增大而____;当k”连接)
4、直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是______.
5、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:
华氏温度(℉)
50
68
86
104
……
212
摄氏温度(℃)
10
20
30
40
……
m
(1)m=______;
(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.
三、解答题(5小题,每小题10分,共计50分)
1、五和超市购进、两种饮料共200箱,两种饮料的成本与销售价如下表:
饮料
成本(元/箱)
销售价(元/箱)
25
35
35
50
(1)若该超市花了6500元进货,求购进、两种饮料各多少箱?
(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?
2、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示.可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为.请你帮她画出平面直角坐标系,并写出其他各景点的坐标.
3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.
(1)求购买一个型篮球、一个型篮球各需多少元?
(2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;
(3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?
4、已知,一次函数y=2x+4的图象与x轴、y轴分别交于点A、点B,正方形BOCD的顶点D在第二象限内,直线DE交AB于点E,交x轴于点F,
(1)求点D的坐标和AB的长;
(2)若△BDE≌△AFE,求点E的坐标;
(3)若点P、点Q是直线BD、直线DF上的一个动点,当△APQ是以AP为直角边的等腰直角三角形时,直接写出Q点的坐标.
5、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
(1)请直接写出C、D两点的坐标:点C ,点D ;
(2)当BF=BC时,连接FE.
①求点F的坐标;
②求此时△BEF的面积.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
2、B
【解析】
【分析】
观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.
【详解】
解:点的运动规律是每运动四次向右平移四个单位,
,
动点第2021次运动时向右个单位,
点此时坐标为,
故选:B.
【点睛】
本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.
3、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
4、A
【解析】
【分析】
由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标
【详解】
解:过点P作PM⊥OD于点M,
∵长方形的顶点的坐标分别为,点是的中点,
∴点D(5,0)
∵,PM⊥OD,
∴OM=DM
即点M(2.5,0)
∴点P(2.5,4),
故选:A
【点睛】
此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.
5、C
【解析】
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
6、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
7、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
8、A
【解析】
【分析】
观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.
【详解】
∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),
∴y随x的增大而减小,
∴当x>2时,y<0.
故选:A.
【点睛】
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为
.
9、D
【解析】
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
10、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
二、填空题
1、﹣2
【解析】
【分析】
由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
【详解】
解:如图,
由,可知当,不论k取何值,,
即直线y=kx﹣2k+1恒过,
又因为点O为坐标原点,点A(4,2),可知为OA中点,
可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
所以代入点B(0,5)可得:,解得:.
故答案为:.
【点睛】
本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
2、 增大 减小 y=kx ≠ k
【解析】
【分析】
(1)根据一次函数的性质填写即可;
(2)根据正比例函数得概念填写即可.
【详解】
解:(1)∵函数为一次函数 ,
∴当k>0时,y的值随着x值的增大而增大;当k
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试课后测评,共22页。
这是一份数学第十四章 一次函数综合与测试同步达标检测题,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。