终身会员
搜索
    上传资料 赚现金

    2022年精品解析京改版八年级数学下册第十四章一次函数同步训练试题(名师精选)

    立即下载
    加入资料篮
    2022年精品解析京改版八年级数学下册第十四章一次函数同步训练试题(名师精选)第1页
    2022年精品解析京改版八年级数学下册第十四章一次函数同步训练试题(名师精选)第2页
    2022年精品解析京改版八年级数学下册第十四章一次函数同步训练试题(名师精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中北京课改版第十四章 一次函数综合与测试随堂练习题

    展开

    这是一份初中北京课改版第十四章 一次函数综合与测试随堂练习题,共28页。试卷主要包含了如图,过点A,已知点A,在平面直角坐标系中,点P等内容,欢迎下载使用。


    京改版八年级数学下册第十四章一次函数同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )

    A.①③ B.①④ C.①②③ D.①③④
    2、在平面直角坐标系中,点A的坐标为(﹣4,3),若AB∥x轴,且AB=5,当点B在第二象限时,点B的坐标是(  )
    A.(﹣9,3) B.(﹣1,3) C.(1,﹣3) D.(1,3)
    3、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
    A.4个 B.5个 C.6个 D.7个
    4、下列关于变量x,y的关系,其中y不是x的函数的是(  )
    A. B.
    C. D.
    5、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    6、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是(  )

    A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
    7、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )
    A. B. C. D.
    8、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    9、在平面直角坐标系中,点P(-2,3)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    10、下列命题中,真命题是( )
    A.若一个三角形的三边长分别是a、b、c,则有
    B.(6,0)是第一象限内的点
    C.所有的无限小数都是无理数
    D.正比例函数()的图象是一条经过原点(0,0)的直线
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知函数y=,那么自变量x的取值范围是_________.
    2、A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_____h两人恰好相距5千米.

    3、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.

    4、如图,直线l:y=﹣x,点A1坐标为(﹣3,0).经过A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2021的坐标为_____.

    5、如果直线与直线的交点在第二象限,那么b的取值范围是______.
    三、解答题(5小题,每小题10分,共计50分)
    1、在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上.
    (1)在图中作出DEF,使得DEE与ABC关于x轴对称;
    (2)写出D,E两点的坐标:D ,E .
    (3)求DEF的面积.

    2、阅读下列一段文字,然后回答问题.
    已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或.
    (1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;
    (2)已知一个三角形各顶点坐标为、、,你能判定此三角形的形状吗?说明理由.
    (3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度.
    3、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.

    (1)小红、小华谁的速度快?
    (2)出发后几小时两人相遇?
    (3)A,B两地离学校分别有多远?
    4、已知一次函数.
    (1)画出函数图象.
    (2)不等式>0的解集是_______;不等式<0的解集是_______.
    (3)求出函数图象与坐标轴的两个交点之间的距离.

    5、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.
    (1)求购买一个型篮球、一个型篮球各需多少元?
    (2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;
    (3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    分析图像上每一段表示的实际意义,再根据行程问题计算即可.
    【详解】
    ①甲的速度为,故正确;
    ②时,已的速度为,后,乙的速度为,故错误;
    ③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
    ④由①②③得:甲的函数表达式为:,
    已的函数表达为:时,,时,,
    时,甲、乙两名运动员相距,
    时,甲、乙两名运动员相距,
    时,甲、乙两名运动员相距为,故正确.
    故选:D.
    【点睛】
    本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
    2、A
    【解析】
    【分析】
    根据平行及线段长度、点B在第二象限,可判断点B一定在点A的左侧,且两个点纵坐标相同,再由线段长即可确定点B的坐标.
    【详解】
    解:∵轴,且,点B在第二象限,
    ∴点B一定在点A的左侧,且两个点纵坐标相同,
    ∴,即,
    故选:A.
    【点睛】
    题目主要考查坐标系中点的坐标,理解题意,掌握坐标系中点的特征是解题关键.
    3、A
    【解析】
    【分析】
    由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
    【详解】
    解:设直线AB的解析式为y=kx+b,
    ∵一次函数图象与直线y=x+平行,
    ∴k=,
    又∵所求直线过点(﹣1,﹣25),
    ∴﹣25=×(﹣1)+b,
    解得b=﹣,
    ∴直线AB为y=x﹣,
    ∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
    设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
    因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
    解得:≤N≤4,
    所以N=1,2,3,4共4个,
    故选:A.
    【点睛】
    本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
    4、D
    【解析】
    【详解】
    解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
    D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
    故选:D.
    【点睛】
    本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
    5、D
    【解析】
    【分析】
    若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
    【详解】
    解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
    B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
    C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
    D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
    故选D.
    【点睛】
    本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
    6、D
    【解析】
    【分析】
    先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
    【详解】
    解:由图可知:A(0,3),xB=1.
    ∵点B在直线y=2x上,
    ∴yB=2×1=2,
    ∴点B的坐标为(1,2),
    设直线AB的解析式为y=kx+b,
    则有:,
    解得:,
    ∴直线AB的解析式为y=-x+3;
    故选:D.
    【点睛】
    本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
    7、D
    【解析】
    【分析】
    直接根据“上加下减,左加右减”的原则进行解答.
    【详解】
    解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.
    故选:D.
    【点睛】
    本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    8、D
    【解析】
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    9、B
    【解析】
    【分析】
    根据点横纵坐标的正负分析得到答案.
    【详解】
    解:点P(-2,3)在第二象限,
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
    10、D
    【解析】
    【分析】
    根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
    【详解】
    解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
    B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
    C、无限不循环小数都是无理数,
    D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
    故选:D
    【点睛】
    本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据二次根式有意义的条件列出不等式,解不等式得到答案.
    【详解】
    解:由题意得,,
    解得,,
    故答案为:.
    【点睛】
    本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.
    2、0.8或1
    【解析】
    【分析】
    分相遇前或相遇后两种情形分别列出方程即可解决问题.
    【详解】
    解:由题意可知,乙的函数图象是l2,
    甲的速度是=30(km/h),乙的速度是=20(km/h).
    设乙出发x小时两人恰好相距5km.
    由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,
    解得x=0.8或1,
    所以甲出发0.8小时或1小时两人恰好相距5km.
    故答案为:0.8或1.
    【点睛】
    本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
    3、
    【解析】
    【分析】
    直接利用已知点坐标得出原点位置,进而得出答案.
    【详解】
    解:如图所示,建立平面直角坐标系,
    ∴轰炸机C的坐标为(-1,-2),
    故答案为:(-1,-2).

    【点睛】
    此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..
    4、(﹣,0)
    【解析】
    【分析】
    先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2021的坐标.
    【详解】
    解:∵点A1坐标为(﹣3,0),
    ∴OA1=3,
    在y=﹣x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),
    ∴由勾股定理可得OB1==5,即OA2=5=3×,
    同理可得,
    OB2=,即OA3==5×()1,
    OB3=,即OA4==5×()2,
    以此类推,
    OAn=5×()n﹣2=,
    即点An坐标为(﹣,0),
    当n=2021时,点A2021坐标为(﹣,0),
    故答案为:(﹣,0).

    【点睛】
    本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y=﹣x.
    5、b<
    【解析】
    【分析】
    联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.
    【详解】
    解:联立,
    解得 ,
    ∵交点在第二象限,
    ∴,
    解不等式①得:,
    解不等式②得:,
    ∴的取值范围是.
    故答案为:.
    【点睛】
    本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.
    三、解答题
    1、最大588cm
    故答案为3,588.
    (5)
    根据无盖长方体盒子的容积的变化,截去的正方形边长在3与4之间时,无盖长方体盒子的容积最大;
    当x=3,5时,b(a-2b)2=3.5×(20-2×3.5)2=591.5cm3,
    当时,b(a-2b)2=3.25×(20-2×3.25)2=592.3125cm3,
    当时,b(a-2b)2=3.375×(20-2×3.375)2=592.5234375cm3,
    当剪去图形的边长为3.3cm时,所得的无盖长方体的容积最大,此时无盖长方体的容积是592.548cm3.
    因此表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位.
    【点睛】
    本题考查无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题,掌握无盖盒子的边长与体积关系探究,列代数式,从表格获取信息处理信息,应用信息解决问题是解题关键.
    2.(1)直线的解析式为;(2);(3)或.
    【解析】
    【分析】
    (1)在中,利用勾股定理确定,由对称设,,,再利用勾股定理即可确定点B的坐标,然后代入解析式即可;
    (2)由(1)得,BC=OB=3,根据O点关于直线AB的对称点C点在直线AD上,可得,即两个三角形的面积相同,使的面积与的面积相同,只需要找到的面积与的面积相同的点即可,设点,两个三角形的高均为线段OA长度,只需要底相同即可,根据底相同列出方程求解即可得;
    (3)设若直线、与直线夹角等于,由图可得为等腰直角三角形,作于,于,可得,,
    利用全等三角形的判定及性质可得,,直线过,直线的解析式为:,设坐标为,则,由各线段间的数量关系可得点坐标为,将其代入直线AB的解析式,即可得出t的值,然后点E、F坐标,代入解析式求解即可.
    【详解】
    解:(1),
    ,即,
    又,

    设直线的解析式为,将点代入得,
    直线的解析式为.
    在中,,
    点、点关于直线对称,
    设,,,

    在中,,


    将点B代入
    直线的解析式为;
    (2)由(1)得,BC=OB=3,如图所示:

    ∵O点关于直线AB的对称点C点在直线AD上,
    ∴,
    ∴,
    使,
    则设点,
    两个三角形的高均为线段OA长度,使底相同即:

    解得:或(舍去),
    ∴;
    (3)如图,设若直线、与直线夹角等于,

    即为等腰直角三角形,作于,于,
    ∴,,
    ∵,
    ∴,
    ∵,
    ∴,
    在与中,

    ∴,
    ,,
    直线过,
    即,解得:,
    直线的解析式为:,
    设坐标为,则,,,
    由线段间的关系可得:
    点坐标为,
    点在直线上,

    解得:,
    ,,
    当直线过点时,,解得:;
    当直线过点时,,解得:;
    所以或.
    【点睛】
    本题主要考查了一次函数的综合应用,涉及勾股定理、全等三角形的判定和性质等知识点,作出相应图象,根据图象之间的关系进行求解是本题解题的关键.
    3.(1)见解析;(2)(﹣1,﹣4),(﹣4,1);(3)9.5
    【解析】
    【分析】
    (1)先找出点A、B、C关于x轴的对称点,然后依次连接即可得;
    (2)根据△DEF的位置,即可得出D,E两点的坐标;
    (3)依据割补法进行计算,使用长方形面积减去三个三角形面积即可得到△DEF的面积.
    【详解】
    解:(1)如图所示,△DEF即为所求;

    (2)由图可得,D(﹣1,﹣4),E(﹣4,1);
    故答案为:(﹣1,﹣4),(﹣4,1);
    (3),
    ∴面积为9.5.
    【点睛】
    题目主要考查作轴对称图形,点在坐标系中的位置及利用割补法求三角形面积,熟练掌握轴对称图形的作法是解题关键.
    2、(1)5;(2)能,理由见解析;(3)134,0,73
    【解析】
    【分析】
    (1)根据文字提供的计算公式计算即可;
    (2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;
    (3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值.
    【详解】
    (1)∵A、B两点在平行于y轴的直线上
    ∴AB=4-(-1)=5
    即A、B两点间的距离为5
    (2)能判定△DEF的形状
    由两点间距离公式得:DE=(-2-1)2+(2-6)2=5,
    DF=(4-1)2+(2-6)2=5,EF=4-(-2)=6
    ∵DE=DF
    ∴△DEF是等腰三角形
    (3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小
    由对称性知:点G的坐标为(4,-2),且PG=PF
    ∴PD+PF=PD+PG≥DG
    即PD+PF的最小值为线段DG的长
    设直线DG的解析式为y=kx+b(k≠0),把D、G的坐标分别代入得:k+b=64k+b=-2
    解得:k=-83b=263
    即直线DG的解析式为y=-83x+263
    上式中令y=0,即-83x+263=0,解得x=134
    即点P的坐标为134,0
    由两点间距离得:DG=DG=(4-1)2+(-2-6)2=9+64=73
    所以PD+PF的最小值为73


    【点睛】
    本题是材料阅读题,考查了等腰三角形的判定,待定系数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题.
    3、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m
    【解析】
    【分析】
    (1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;
    (2)观察横坐标,可得答案;
    (3)观察纵坐标,可得答案.
    【详解】
    解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),
    由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min),
    >,小华的速度快.
    (2)由横坐标看出,出发后h两人相遇.
    (3)由纵坐标看出A地距学校500m,B地距学校200m.
    【点睛】
    本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
    4、(1)见解析;(2)x<-3;x>-3;(3)BC=35.
    【解析】
    【分析】
    (1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;
    (2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;
    (3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)
    【详解】
    (1)当x=0时,y=-2x-6=-6,
    ∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);
    当y=-2x-6=0时,解得:x=-3,
    ∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).
    描点连线画出函数图象,如图所示.

    (2)观察图象可知:当x<-3时,
    一次函数y=-2x-6的图象在x轴上方;
    当x>-3时,一次函数y=-2x-6的图象在x轴下方.
    ∴不等式-2x-6>0的解集是x<-3;
    不等式-2x-6<0的解集是x>-3.
    故答案是:x<-3,x>-3;
    (3)∵B(-3,0),C(0,-6),
    ∴OB=3,OC=6,
    ∴BC=OB2+OC2=35
    【点睛】
    本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.
    5、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:W=30t+15000(0≤t≤300);(3)A型篮球120个,则B型篮球为180个.
    【解析】
    【分析】
    (1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据单价、数量、总价的关系即可得;
    (3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.
    【详解】
    解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:
    3x+2y=3402x+y=210,
    解得:x=80y=50,
    ∴一个A型篮球为80元,一个B型篮球为50元;
    (2)A型篮球t个,则B型篮球为(300-t)个,根据题意可得:
    W=80t+50300-t=30t+15000(0≤t≤300),
    ∴函数解析式为:W=30t+15000(0≤t≤300);
    (3)根据题意可得:A型篮球单价为(80-8)元,B型篮球单价为50×0.9元,则
    16740=(80-8)t+50×0.9×300-t,
    解得:t=120,300-t=180,
    ∴A型篮球120个,则B型篮球为180个.
    【点睛】
    题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共28页。试卷主要包含了已知点,若一次函数y=kx+b等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试课后复习题:

    这是一份数学八年级下册第十四章 一次函数综合与测试课后复习题,共26页。试卷主要包含了已知点A,一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。

    初中数学第十四章 一次函数综合与测试同步达标检测题:

    这是一份初中数学第十四章 一次函数综合与测试同步达标检测题,共25页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map