数学七年级下册第五章 二元一次方程组综合与测试测试题
展开
这是一份数学七年级下册第五章 二元一次方程组综合与测试测试题,共18页。试卷主要包含了已知方程组中,x,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、由方程组可以得出关于x和y的关系式是( )A. B. C. D.2、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )A.9 B.7 C.5 D.33、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )A. B. C. D.4、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想5、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )A.6台 B.7台 C.8台 D.9台6、已知方程组中,x、y的值相等,则m等于( ).A.1或-1 B.1 C.5 D.-57、己知是关于,的二元一次方程的解,则的值是( )A.3 B. C.2 D.8、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )A. B.C. D.9、若关于x,y的二元一次方程组的解,也是二元一次方程x+2y=﹣1的解,则a的值为( )A.2 B.1 C. D.010、《九章算术》中记载了一个问题,原文如下:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”大意是:有几个人一起去买一件物品,每人出8文,多3文;每人出7文,少4文,求人数及该物品的价格.小明用二元一次方程组解此问题,若已经列出一个方程,则符合题意的另一个方程是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用加减法解方程组时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________.2、关于x的方程与的解相同,则k的值为____.3、已知是二元一次方程组的解,则mn的相反数为______.4、已知,用含的式子表示,其结果是_______.5、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.三、解答题(5小题,每小题10分,共计50分)1、解方程组2、方程组的解满足2x-ky=10(k是常数).(1)求k的值;(2)求出关于x,y的方程(k-1)x+2y=13的正整数解.3、解方程组:.4、解方程组:(1)(2)5、中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某中药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型甲乙运载量(吨/辆)1012运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆? ---------参考答案-----------一、单选题1、C【分析】分别用x,y表示m,即可得到结果;【详解】由,得到,由,得到,∴,∴;故选C.【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.2、C【分析】先求出的解,然后代入可求出a的值.【详解】解:,由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得2a-y=a,∴y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7,故选C.【点睛】本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.3、A【分析】把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.【详解】解:把x=1代入方程组,可得,解得y=2,将y=2代入1+my=0中,得m=,故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.4、A【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.5、B【分析】设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.【详解】解:设同时开动x台机组,每台机组每小时处理a吨污水,依题意,得,解得:,∵5ax=30a+5a,∴x=7.答:要同时开动7台机组.故选:B.【点睛】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.6、B【分析】根据x、y的值相等,利用第二个方程求出x的值,然后代入第一个方程求解即可.【详解】解:解方程组,得:,∵x、y的值相等,∴,解得.故选:B.【点睛】本题考查了解二元一次方程组,根据x、y的值相等利用第二个方程求出x的值是解题的关键.7、A【分析】将代入关于x,y的二元一次方程2x-y=27得到关于k的方程,解这个方程即可得到k的值.【详解】解:将代入关于x,y的二元一次方程2x-y=27得:2×3k-(-3k)=27.∴k=3.故选:A.【点睛】本题主要考查了二元一次方程的解和解一元一次方程,将方程的解代入原方程是解题的关键.8、C【分析】根据题意,x+y=40,5x+10y=275,判断即可.【详解】根据题意,得x+y=40,5x+10y=275,∴符合题意的方程组为,故选C.【点睛】本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.9、D【分析】解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程,解方程即可.【详解】解:,①+②得2x=2a+6,x=a+3,把代入①,得a+3+y=-a+1,y=-2a-2,∵x+2y=﹣1∴a+3+2(-2a-2)=-1,∴a=0,故选D.【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x+2y=﹣1中得到关于a的方程是解题的关键.10、B【分析】根据题意,可知设每人出x文,总共y文,再列另一个方程即可.【详解】∵,∴设每人出x文,总共y文,∴另一个方程为,故选B.【点睛】本题考查了二元一次方程组,正确设未知数,灵活列方程是解题的关键.二、填空题1、 【解析】【分析】根据加减消元的方法求解即可.【详解】解:用加减法解方程组时,由①+②,得,两边同时除以6,得,由②-①,得,两边同时除以2,得,所以原方程组的解为.故答案是:,,,,.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2、2【解析】【分析】由题意根据同解方程解方程的方法联立方程可得,进而即可得出答案.【详解】解:因为与的解相同,且,所以,可得,解得:.故答案为:2.【点睛】本题考查同解方程解方程,解答本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3、-12【解析】【分析】把代入方程组求出m,n即可;【详解】把代入中得:,得:,解得:,把代入①中得:,∴方程组的解是,∴,∴mn的相反数是;故答案是:.【点睛】本题主要考查了二元一次方程组的求解,代数式求值,相反数的性质,准确计算是解题的关键.4、【解析】【分析】先将化成,然后再代入化简即可.【详解】解:∵,∴,∴,故答案是:.【点睛】本题考查了利用代入消元法解二元一次方程及其应用,熟练掌握运算法则是解本题的关键.5、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把代入方程3mx-y=-1中得:3m+2=-1,解得:m=-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.三、解答题1、.【分析】将①×10,②×6,进而根据加减消元法解二元一次方程组即可【详解】解:①×10,②×6,得③×3-④,得11y=33,解得y=3.将y=3代入③,解得x=4.所以原方程组的解为【点睛】本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.2、(1);(2),【分析】(1)先求出方程组的解,再代入方程,即可求出k值;(2)把k的值代入方程得:,再根据x、y都是正整数,得到,由此求解即可.【详解】解:(1),把①×2得:③,用②+③得:,解得,把代入①,解得,∴方程组的解为:,
将代入得:,
解得:;
(2)把代入方程得:,即,∵x、y都是正整数,∴,∴,
当时,;当时,;
∴关于x,y的方程的正整数解为或.【点睛】本题主要考查了解一元一次方程和解二元一次方程组,解题的关键在于能够熟练掌握解一元一次方程和解二元一次方程组的方法.3、【分析】方程组利用加减消元法求出解即可.【详解】解:,①×2﹣②得:9y=12,解得:y=,把y=代入②得:6x+4=8,解得:x=,则方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、(1);(2)【分析】(1)利用把两个方程相加先消去求解 再求解,从而可得方程组的解;(2)把方程①乘以3,再与方程②相加消去 求解 再求解 从而可得答案.【详解】解:(1)①+②得: 解得: 把代入①得: 解得: 所以方程组的解是 (2)①得: ②+③得: 解得: 把代入①得: 所以原方程组是解是【点睛】本题考查的是利用加减消元法解二元一次方程组,掌握“加减法解二元一次方程组”是解本题的关键.5、甲种车型需9辆,乙种车型需5辆.【分析】设甲种车型需辆,乙种车型需辆,然后根据药材一共有150吨,运费一共9900元,列出方程求解即可.【详解】解:设甲种车型需辆,乙种车型需辆,根据题意得解得,∴甲种车型需9辆,乙种车型需5辆答:甲种车型需9辆,乙种车型需5辆.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于能够准确理解题意,列出方程求解.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后复习题,共20页。试卷主要包含了下列方程组为二元一次方程组的是,用代入消元法解关于,二元一次方程组的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共19页。
这是一份数学七年级下册第五章 二元一次方程组综合与测试测试题,共18页。