![2021-2022学年京改版七年级数学下册第五章二元一次方程组难点解析练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12698570/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组难点解析练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12698570/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年京改版七年级数学下册第五章二元一次方程组难点解析练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12698570/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中北京课改版第五章 二元一次方程组综合与测试精练
展开
这是一份初中北京课改版第五章 二元一次方程组综合与测试精练,共21页。试卷主要包含了若方程组的解为,则方程组的解为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是方程的解,则等于( )A. B. C. D.2、关于x,y的方程,k比b大1,且当时,,则k,b的值分别是( ).A., B.2,1 C.-2,1 D.-1,03、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.4、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )A.4 B.3 C.2 D.15、若方程组的解为,则方程组的解为( )A. B.C. D.6、已知是方程5x−ay=15的一个解,则a的值为( )A.5 B.−5 C.10 D.−107、关于的二元一次方程组的解满足,则k的值是( )A.2 B. C. D.38、如图,已知长方形中,,,点E为AD的中点,若点P在线段AB上以的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若与全等,则点Q的运动速度是( )A.6或 B.2或6 C.2或 D.2或9、已知方程,,有公共解,则的值为( ).A.3 B.4 C.0 D.-110、已知 是方程的一个解, 那么的值是( ).A.1 B.3 C.-3 D.-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、节日将至,某水果店打算将红心猕猴桃、奉节脐橙、阿克苏糖心苹果以鲜果礼盒的方式进行销售.其中一个红心猕猴桃与一个阿克苏糖心苹果成本价之和为一个奉节脐橙的成本价的两倍,一个阿克苏糖心苹果与一个红心猕猴桃成本价之差的两倍等于一个奉节脐橙的成本价.商家打算将甲种鲜果礼盒装红心猕猴桃6个、奉节脐橙4个、阿克苏糖心苹果6个;乙种鲜果礼盒装红心猕猴桃8个、奉节脐橙4个、阿克苏糖心苹果6个;丙种鲜果礼盒装红心猕猴桃4个、奉节脐橙8个、阿克苏糖心苹果8个.已知每个鲜果礼盘的成本价定为各水果成本价之和,每个甲种鲜果礼盒在成本价的基础上提高之后进行销售,每个乙种鲜果礼盒的利润等于两个阿克苏糖心苹果的成本价,每个丙种鲜果礼盒的利润率和每个乙种鲜果礼盒时利润率相等.某单位元旦节发福利,准备给每个员工发一个鲜果礼盒.采购员向该水果店预订了80个甲种鲜果礼盒,预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间.该水果店通过核算,此次订单的利润率为,则该单位一共有________名员工.2、元旦期间,某商场开业,为了吸引更多的人流量,该商场决定举行迎宾抽奖活动.活动规则如下:只要在该商场消费一定的金额,消费者就可以凭借小票去抽奖中心兑换盲盒(盲盒的形状,大小,重量等各种属性完全相同),且盲盒里面分别装有50元、30元、10元、5元的奖金.开业当天商场准备了400个盲盒,且全部被消费者领完.经统计,开业当天上午领取的盲盒中所含奖金的总金额为950元,其中领取含有30元的盲盒的数量是含有10元的盲盒数量的一半,领取含50元的盲盒的数量多于1个,少于5个;下午领取的盲盒中所含奖金的总金额是1240元,下午领取含5元的盲盒的数量比上午领取含5元的盲盒的数量少10个,领取含10元的盲盒的数量是上午领取含10元的盲盒的数量的2倍,领取含30元的盲盒的数量比上午领取含30元的盲盒的数量多5个,含50元的盲盒只有1个被抽中,剩余的盲盒则全被晚上领取完毕,则晚上被领取的盲盒的数量是______.3、方程的正整数解是________.4、已知,用含m的代数式表示n,则______.5、已知关于x,y的二元一次方程3mx-y=-1有一组解是,则m的值是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?
2、甲、乙两同学同时解方程组,甲看错了方程①中的m,得到的方程组的解为,乙看错了方程②中的,得到的方程组的解为,求原方程组的正确解.3、阅读下列解方程组的方法,然后回答问题.解方程组解:由①-②得即③,③×16得④②-④得,把代入③得解得:原方程组的解是请你仿照上面的解法解方程组.4、解方程组:(1); (2).5、解方程(组)(1)10+2(x﹣)=7(x﹣2);(2);(3). ---------参考答案-----------一、单选题1、B【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.2、A【分析】将时,代入,得 ①,再由k比b大1得 ②,将两个方程联立解之即可【详解】将时,代入,得 ①,再由k比b大1得 ②,①②联立,解得,.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.3、B【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.4、C【分析】先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.【详解】解:由题意得:,联立,由①②得:,解得,将代入①得:,解得,将代入方程得:,解得,故选:C.【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.5、B【分析】由整体思想可得,求出x、y即可.【详解】解:∵方程组的解为,∴方程组的解,∴;故选:B.【点睛】本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.6、A【分析】把与的值代入方程计算即可求出的值.【详解】解:把代入方程,得,解得.故选:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7、B【分析】解方程组,用含的式子表示,然后将方程组的解代入即可.【详解】解:,①-②得:,∵,∴,解得:,故选:B.【点睛】本题考查了二元一次方程组解,和二元一次方程组的解的应用,运用整体法得出,可以是本题变得简便.8、A【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为x cm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,,解得,,即点Q的运动速度cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,,解得:,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度或6cm/s时能使两三角形全等.故选:A.【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.9、B【分析】联立,,可得:,,将其代入,得值.【详解】 ,解得,把代入中得:,解得:.故选:B.【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.10、A【分析】把x=1,y=-1代入方程2x-ay=3中,解关于a的方程,即可求出a的值.【详解】解:把x=1,y=-1代入方程2x-ay=3中,得:
2×1-a×(-1)=3,
2+a=3,
a=1.
故选:A.【点睛】本题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.二、填空题1、140【解析】【分析】设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,然后由题意易得,则有甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,进而可得甲的利润为元,乙的利润为元,利润率为,丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,则根据“订单的利润率为”列出方程,最后根据“预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间”来求解即可.【详解】解:设一个红心猕猴桃的成本价为x元,一个奉节脐橙的成本价为z元,一个阿克苏糖心苹果的成本价为y元,由题意得:,解得:,∴甲种鲜果礼盒的成本价为元,乙种鲜果礼盒的成本价为元,丙种鲜果礼盒的成本价为元,∴甲的利润为元,乙的利润为元,则有它的利润率为,进而可得丙的利润为元,设预定乙种鲜果礼盒的数量为m,丙种鲜果礼盒的数量为n,由题意得:,化简得:,∴,∵预订乙种鲜果礼盒的数量与丙种鲜果礼盒的数量之差位于12和28之间,∴,即,解得:,∵m为正整数,∴m的值可能为36、37、38、39、40、41、42、43、44,∵n为正整数,∴是6的倍数,∴,∴该单位一共有80+40+20=140(名);故答案为140.【点睛】本题主要考查三元一次方程组的应用及一元一次不等式的应用,熟练掌握利用消元思想及不定方程的求解方法是解题的关键.2、206个【解析】【分析】设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,由下午领取的盲盒的总金额为1240元得,分三种情况:当上午领取的50元盲盒为2个时,3个时,4个时,分别解方程组求解即可.【详解】解:设上午领取的含有5元的盲盒与含有10元的盲盒的数量分别为x个、y个,其他盲盒领取的个数见表格, 上午领取的个数下午领取的个数50元盲盒 130元盲盒+510元盲盒y2y5元盲盒xx-10 由题意得,化简得,∵上午领取含50元的盲盒的数量多于1个,少于5个,∴当上午领取的50元盲盒为2个时,得,化简得,解方程组,得,∴晚上领取的盲盒的个数为206个;当上午领取的50元盲盒为3个时,得,化简得,解方程组,得,此时为小数,故舍去;当上午领取的50元盲盒为4个时,得,化简得,解方程组,得(舍去),综上,晚上领取的盲盒的个数为206个,故答案为:206个【点睛】此题考查二元一次方程组的实际应用,正确理解题意设未知数并列得方程组是解题的关键.3、【解析】【分析】由,可得出,,又由 均为正整数,分析即可得到正确答案.【详解】解:∵,∴∴∴,同理可得:又∵ 均为正整数∴满足条件的解有且只有一组,即故答案为:【点睛】本题考查三元一次方程的变式,牢记相关的知识点并能够灵活应用是解题关键.4、【解析】【分析】先移项,然后将的系数化为1,即可求解.【详解】解:故答案为:【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数.5、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把代入方程3mx-y=-1中得:3m+2=-1,解得:m=-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.三、解答题1、动点M每秒运动5个单位长度,动点N每秒运动2个单位长度【分析】设动点M、N运动的速度分别是每秒x、y个单位长度,根据“若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.”列出方程组,解出即可.【详解】解:设动点M、N运动的速度分别是每秒x、y个单位长度,∵点A、B表示的数分别是-20、64,∴线段AB长为,∴由题意有,解得∴动点M每秒运动5个单位长度,动点N每秒运动2个单位长度.【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.2、【分析】把代入方程组第二个方程求出n的值,把代入第一个方程求出m的值,确定出原方程组,再求解即可.【详解】解:把代②得:-12+n=-5,即n=7;把代入①得:4m-4=12,即m=4,故方程组为,③×3-②×2得:-23y=46,即y=-2,把y=-2代入③得:x=.则方程组的解为.【点睛】本题考查的是二元一次方程的解,解答此题关键是将每一个解代入没有看错的方程中,分别求m、n的值,再解方程组即可.3、.【分析】模仿材料发现第一个方程中各项系数都比第二个方程的各项系数都大3,可采用材料方法①﹣②得:x+y=1③,①﹣③×2021 得:x=4,再求y即可.【详解】解:①﹣②得:3x+3y=3,即x+y=1③①﹣③×2021 得:x=4把x=4代入③得:y=-3所以原方程组的解为.【点睛】本题考查解二元一次方程组.掌握抓住方程组的特征,用加减法解方程组是解题关键.①4、(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可;(2)首先整理方程,然后利用加减消元法解二元一次方程组即可.【详解】解:(1),由①,可得:y=3x-7③,③代入②,可得:x+3(3x-7)=-1,解得:x=2,把x=2代入③,解得:y=-1,∴原方程组的解为.(2)原方程可化为,①×2-②,可得:3y=9,解得:y=3,把y=3代入①,解得:x=5,∴原方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.5、(1)x=;(2)x=﹣4;(3).【分析】(1)方程去括号、移项、合并同类项、系数化为1即可;(2)方程整理后,去分母、移项、合并同类项、系数化为1即可;(3)利用加减消元法解答即可.【详解】解:(1)10+2(x﹣)=7(x﹣2),去括号、得10+2x﹣1=7x﹣14,移项、得2x﹣7x=1﹣10﹣14,合并同类项、得﹣5x=﹣23,系数化为1,得x=;(2)﹣,整理、得,去分母、得17+20x﹣15x=﹣3,移项、得20x﹣15x=﹣3﹣17,合并同类项、得5x=﹣20,系数化为1,得x=﹣4;(3)方程组整理,得,①+②,得6y=6,解得y=1,把y=1代入②,得x﹣2=1,解得x=3,故方程组的解为.【点睛】此题考查了解一元一次方程,解二元一次方程组,解题的关键是熟练掌握解一元一次方程和二元一次方程组的步骤.
相关试卷
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试课后练习题,共21页。试卷主要包含了已知是方程的解,则k的值为,已知二元一次方程组则,已知方程组的解满足,则的值为,有铅笔,小明在解关于x等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习,共19页。试卷主要包含了有铅笔,若是关于x,已知是二元一次方程,则的值为等内容,欢迎下载使用。
这是一份初中北京课改版第五章 二元一次方程组综合与测试课时练习,共19页。试卷主要包含了下列方程是二元一次方程的是,方程组的解是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)