![精品解析2022年最新京改版七年级数学下册第九章数据的收集与表示课时练习试卷(含答案详细解析)01](http://img-preview.51jiaoxi.com/2/3/12693146/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年最新京改版七年级数学下册第九章数据的收集与表示课时练习试卷(含答案详细解析)02](http://img-preview.51jiaoxi.com/2/3/12693146/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年最新京改版七年级数学下册第九章数据的收集与表示课时练习试卷(含答案详细解析)03](http://img-preview.51jiaoxi.com/2/3/12693146/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第九章 数据的收集与表示综合与测试巩固练习
展开京改版七年级数学下册第九章数据的收集与表示课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
2、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
3、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况
4、某校在计算学生的数学总评成绩时,规定期中考试成绩占,期末考试成绩占,林琳同学的期中数学考试成绩为分,期末数学考试成绩为分,那么他的数学总评成绩是( )
A.分 B.分 C.分 D.分
5、一组数据2,9,5,5,8,5,8的中位数是( )
A.2 B.5 C.8 D.9
6、下列调查中,最适合抽样调查的是( )
A.调查某校七年级一班学生的课余体育运动情况 B.调查某班学生早餐是否有喝牛奶的习惯
C.调查某种灯泡的使用寿命 D.调查某校足球队员的身高
7、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:
成绩(分) | 36 | 40 | 43 | 46 | 48 | 50 | 54 |
人数(人) | 2 | 5 | 6 | 7 | 8 | 7 | 5 |
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是48分
C.该班学生这次考试成绩的中位数是47分
D.该班学生这次考试成绩的平均数是46分
8、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
册数/册 | 1 | 2 | 3 | 4 | 5 |
人数/人 | 2 | 5 | 7 | 4 | 2 |
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3 B.3,7 C.2,7 D.7,3
9、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的( )
A.中位数 B.方差 C.平均数 D.众数
10、某校人工智能科普社团有12名成员,成员的年龄情况统计如下:
年龄(岁) | 12 | 13 | 14 | 15 | 16 |
人数(人) | 1 | 4 | 3 | 2 | 2 |
则这12名成员的平均年龄是( )
A.13岁 B.14岁 C.15岁 D.16岁
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一组数据25,29,20,x,14,它的中位数是23,则这组数据的平均数为______.
2、若、、的平均数为,则、、的平均数为______.
3、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如表:
测试项目 | 创新能力 | 综合知识 | 语言表达 |
测试成绩/分 | 72 | 80 | 96 |
如果将创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,则该应聘者的总成绩是 ____分.
4、很多中学生不能注意用眼卫生,小明和几位同学一起对全校3200名学生的视力状况进行了调查,并绘制了扇形统计图,则全校视力500度以上的学生有_____人.
5、若数据,,的平均数是3,则数据,,的平均数是____.
三、解答题(5小题,每小题10分,共计50分)
1、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:
(1)求本次抽取的学生的人数.
(2)请根据以上信息直接在答题卡中补全条形统计图.
(3)求扇形统计图中的值.
(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.
2、下面是我国近几届奥运会所获金牌数,请指出其中的中位数.
第25届 | 第26届 | 第27届 | 第28届 | 第29届 |
16枚 | 16枚 | 28枚 | 32枚 | 51枚 |
3、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙三名应聘者进行了初步测试,测试成绩如下表:
| 甲 | 乙 | 丙 |
学历 | 7 | 9 | 8 |
经验 | 8 | 7 | 7 |
工作态度 | 6 | 8 | 5 |
如果将学历、经验和工作态度三项得分按的比例确定各人的最终得分,并以此为依据确定录用者,那么谁将被录用?
4、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
5、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 | 非常不满意 | 不满意 | 有一点满意 | 满意 |
人数 | 200 | 160 | 32 | 8 |
百分比 |
|
|
|
|
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
2、D
【解析】
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
3、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
4、D
【解析】
【分析】
根据加权平均数的计算方法列式计算即可.
【详解】
解:他的数学总评成绩是分,
故选:D.
【点睛】
本题主要考查加权平均数算法,熟练掌握加权平均数的算法是解题的关键.
5、B
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
6、C
【解析】
【分析】
根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得.
【详解】
解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;
B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;
C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;
D、“调查某校足球队员的身高”适合全面调查,此项不符题意;
故选:C.
【点睛】
本题考查了抽样调查与全面调查,熟记定义是解题关键.
7、D
【解析】
【分析】
由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.
【详解】
解:该班一共有:2+5+6+7+8+7+5=40(人),
得48分的人数最多,众数是48分,
第20和21名同学的成绩的平均值为中位数,中位数为(分),
平均数是(分),
故A、B、C正确,D错误,
故选:D.
【点睛】
本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.
8、A
【解析】
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
9、A
【解析】
【分析】
根据中位数的意义进行求解即可.
【详解】
解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,
因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.
故选:A.
【点睛】
本题考查了中位数的意义,掌握中位数的意义是解题的关键.
10、B
【解析】
【分析】
根据平均数公式计算.
【详解】
解: (岁),
故选:B.
【点睛】
此题考查平均数的计算公式,熟记计算公式是解题的关键.
二、填空题
1、22.2
【解析】
【分析】
由中位数的定义“将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据”即可判断出x的值,再利用求平均数的公式求出结果即可.
【详解】
∵这组数据由5个数组成,为奇数个,且中位数为23,
∴,
∴这组数据为25,29,20,23,14,
∴这组数据的平均数.
故答案为:22.2.
【点睛】
本题考查中位数,求平均数.掌握中位数的定义和求平均数公式是解答本题的关键.
2、9
【解析】
【分析】
根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.
【详解】
解:∵、、的平均数为7,
∴,
∴,
故答案为:9
【点睛】
本题考查计算平均数.掌握平均数的计算公式是解题关键.
3、78
【解析】
【分析】
由创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩,可以列式
,即可得到答案.
【详解】
解:∵创新能力、综合知识和语言表达三项测试成绩按4:3:1的比例计入总成绩
∴=78(分).
则该应聘者的总成绩是78分.
故答案为:78
【点睛】
本题考查加权平均数的应用,牢记相关的知识并能准确计算是解题关键.
4、224
【解析】
【分析】
根据扇形统计图可求出全校视力500度以上的学生所占的百分比,进而可得答案.
【详解】
全校视力500度以上的学生所占的百分比是1﹣10%﹣18%﹣20%﹣45%=7%,
∴全校视力500度以上的学生有7%×3200=224(人).
故答案为:224
【点睛】
本题考查扇形统计图,根据扇形统计图得出全校视力500度以上的学生所占的百分比是解题关键.
5、7
【解析】
【分析】
根据数据都加上一个数(或减去一个数)时,平均数加上或减去同一个数,再根据数据都乘以同一个数,平均数乘以这个数,从而得出答案.
【详解】
解:∵数据x1,x2,x3的平均数是3,
∴数据2x1+1,2x2+1,2x3+1的平均数是2×3+1=7.
故答案为:7.
【点睛】
此题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
三、解答题
1、(1)200人;(2)图见解析;(3)20;(4).
【解析】
【分析】
(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;
(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;
(3)利用喜欢艺术学生的人数除以调查的总人数即可得;
(4)利用喜欢器乐的学生人数所占百分比乘以即可得.
【详解】
解:(1)(人),
答:本次抽取的学生有200人;
(2)喜欢书画的学生人数为(人),
由此补全条形统计图如下:
(3),
则;
(4),
答:喜欢器乐的学生人数所对应圆心角的度数为.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
2、28
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:由图表可得:我国近几届奥运会所获金牌数的中位数为28.
【点睛】
本题主要考查中位数,熟练掌握求一组数据的中位数的定义是解题的关键.
3、甲7分,乙7.8分,丙6.4分,乙将被录用
【解析】
【分析】
按学历、经验和工作态度三项的比例得出每个人的成绩,比较后得出结果.
【详解】
解:甲的综合成绩为:分;
乙的综合成绩为:分;
丙的综合成绩为:分;
∴应该录用乙.
【点睛】
本题考查了加权平均数,熟知加权平均数的一半计算方法以及根据加权平均数作决策是解本题的关键.
4、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
5、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【解析】
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测: 这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课堂检测,共18页。试卷主要包含了为了解学生参加体育锻炼的情况等内容,欢迎下载使用。
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时练习: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时练习,共17页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评: 这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共20页。试卷主要包含了下列调查中,最适合采用全面调查,下列调查中,最适合抽样调查的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。