北京课改版七年级下册第八章 因式分解综合与测试课时练习
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列因式分解正确的是.,下列因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个2、下列运算错误的是( )A. B. C. D.(a≠0)3、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-94、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.5、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.6、下列因式分解正确的是( ).A. B.C. D.7、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.38、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.9、下列因式分解中,正确的是( )A. B.C. D.10、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,,则代数式的值为______.2、在○处填入一个整式,使关于的多项式可以因式分解,则○可以为________.(写出一个即可)3、分解因式:______.4、分解因式_________.5、已知实数a和b适合a2b2+a2+b2+1=4ab,则a+b=___.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:①②(2)因式分解:①②2、分解因式:.3、把下列多项式分解因式:(1)(2)4、因式分解:5、分解因式:(1)3a2﹣6a+3 (2)(x2+y2)2﹣4x2y2 ---------参考答案-----------一、单选题1、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.2、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.3、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.4、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).5、C【解析】【分析】根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.【详解】解:A、,则原等式不成立,此项不符题意;B、等式的右边不是乘积的形式,则此项不符题意;C、是因式分解,此项符合题意;D、等式右边中的不是整式,则此项不符题意;故选:C.【点睛】本题考查了因式分解的定义,熟记定义是解题关键.6、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.7、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.8、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.9、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.二、填空题1、12【解析】【分析】把因式分解,再代入已知的式子即可求解.【详解】∵,,∴∴===3×4=12故答案为:12.【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.2、2x【解析】【分析】可根据完全平方公式或提公因数法分解因式求解即可.【详解】解:∵,∴○可以为2x、-2x、2x-1等,答案不唯一,故答案为:2x.【点睛】本题考查因式分解,熟记常用公式,掌握因式分解的方法是解答的关键.3、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.4、【解析】【分析】直接提取公因式m,进而分解因式得出答案.【详解】解:=m(m+6).故答案为:m(m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、2或-2##-2或2【解析】【分析】先将原式分组分解因式,再根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”即可求得a、b的值,再代入计算即可求得答案.【详解】解:∵a2b2+a2+b2+1=4ab,∴a2b2-2ab+1+a2-2ab+b2=0,∴(ab-1)2+(a-b)2=0,又∵(ab-1)2≥0,(a-b)2≥0,∴ab-1=0,a-b=0,∴ab=1,a=b,∴a2=1,∴a=±1,∴a=b=1或a=b=-1,当a=b=1时,a+b=2;当a=b=-1时,a+b=-2,故答案为:2或-2.【点睛】此题考查了因式分解的运用,非负数的性质,熟练掌握完全平方公式是解决本题的关键.三、解答题1、(1)①;②;(2)①(2m+3)(2m-3);②a(x+y)2【解析】【分析】(1)①利用多项式除以单项式的计算法则求解即可;②先利用平方差公式和多项式乘以多项式的计算法则去括号,然后合并同类项即可;(2)①利用平方差公式分解因式即可;②利用提取公因式和完全平方公式分解因式即可.【详解】解(1)①原式;②原式;(2)①原式=(2m)2-32=(2m+3)(2m-3) ;②原式=a(x2+2xy+y2)=a(x+y)2.【点睛】本题主要考查了分解因式,多项式除以单项式,整式的混合运算,熟知相关计算法则是解题的关键.2、【解析】【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式===【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.3、(1);(2)【解析】【分析】(1)先提取公因式3x,然后利用平方差公式分解因式即可;(2)先提取公因式-5a,然后利用完全平方公式分解因式即可.【详解】(1) ; (2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.4、【解析】【分析】把原式分组成,然后利用完全平方公式和平方差公式化简即可.【详解】解:原式【点睛】本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.5、(1);(2)【解析】【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.【详解】(1),,;(2),,,,.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后复习题,共18页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份七年级下册第八章 因式分解综合与测试综合训练题,共15页。试卷主要包含了下列因式分解中,正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试达标测试,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。