初中数学北京课改版七年级下册第八章 因式分解综合与测试课后测评
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后测评,共16页。试卷主要包含了已知,,那么的值为,下列分解因式正确的是,已知的值为5,那么代数式的值是,若x2+ax+9=等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( )A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)2、下列多项式中有因式x﹣1的是( )①x2+x﹣2;②x2+3x+2;③x2﹣x﹣2;④x2﹣3x+2A.①② B.②③ C.②④ D.①④3、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.4、一元二次方程x2-3x=0的根是( )A.x=0 B.x=3 C.x1=0,x2=3 D.x1=0,x2=-35、已知,,那么的值为( )A.3 B.6 C. D.6、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+17、下列分解因式正确的是( )A. B.C. D.8、已知的值为5,那么代数式的值是( )A.2030 B.2020 C.2010 D.20009、若x2+ax+9=(x﹣3)2,则a的值为( )A.﹣3 B.﹣6 C.±3 D.±610、下列各式中,由左向右的变形是分解因式的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、1002﹣992+982﹣972+962﹣952+…+22﹣12=___.2、因式分解:(x2+y2)2﹣4x2y2=________3、当x=___时,x2﹣2x+1取得最小值.4、分解因式:﹣x2y+6xy﹣9y=___.5、分解因式:3a(x﹣y)+2b(y﹣x)=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1) (2)2、分解因式:3、因式分解:(1)3a2﹣6ab+3b2 (2) (x+1)(x+2)(x+3)(x+4)+14、分解因式:(1)(2)(3)5、分解因式:. ---------参考答案-----------一、单选题1、B【解析】【分析】利用公式法进行因式分解判断即可.【详解】解:A、,故A错误,B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,C、4x2+2x+1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B.【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.2、D【解析】【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:①x2+x﹣2=;②x2+3x+2=;③x2﹣x﹣2=;④x2﹣3x+2=.∴有因式x﹣1的是①④.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.3、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.4、C【解析】【分析】利用提公因式法解一元二次方程.【详解】解: x2-3x=0或故选:C.【点睛】本题考查提公因式法解一元二次方程,是重要考点,掌握相关知识是解题关键.5、D【解析】【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.6、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.7、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.8、B【解析】【分析】将化简为,再将代入即可得.【详解】解:∵,把代入,原式=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.9、B【解析】【分析】由结合从而可得答案.【详解】解: 而 故选:B【点睛】本题考查的是利用完全平方公式分解因式,掌握“”是解题的关键.10、B【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.二、填空题1、5050【解析】【分析】先根据平方差公式进行因式分解,再计算加法,即可求解.【详解】解: 1002-992 + 982-972 + 962-952 +…+22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+…+(2+1)(2-1)= 100+ 99+98+ 97+…+2+1 = 5050.故答案为:5050【点睛】本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键.2、(x-y)2(x+y)2【解析】【分析】根据平方差公式和完全平方公式因式分解即可;【详解】原式,;故答案是:.【点睛】本题主要考查了利用公式法进行因式分解,准确分析化简是解题的关键.3、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.4、【解析】【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:﹣x2y+6xy﹣9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.5、【解析】【分析】根据提公因式法因式分解即可.【详解】3a(x﹣y)+2b(y﹣x)=故答案为:【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y),再利用平方差公式分解因式.【详解】解:(1)==(2)===.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.2、【解析】【分析】原式先变形为,再利用提公因式法分解.【详解】解:原式===【点睛】本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.3、(1);(2).【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.【详解】解:(1),,;(2),,,,.【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.4、(1);(2);(3)【解析】【分析】(1)先提取公因式再利用公式法法因式分解即可;(2)先提取公因式再利用公式法因式分解即可;(3)先提取公因式再利用公式法因式分解即可;【详解】解:(1)原式==(2)原式==(3)原式==【点睛】本题考查了因式分解,利用适当的方法进行因式分解是解题的关键.5、【解析】【分析】先提取公因式y,再根据平方差公式进行二次分解即可求得答案.【详解】解:故答案为:.【点睛】本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试达标测试,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份2021学年第八章 因式分解综合与测试同步达标检测题,共15页。试卷主要包含了下列变形,属因式分解的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共15页。试卷主要包含了多项式与的公因式是等内容,欢迎下载使用。