北京课改版第八章 因式分解综合与测试测试题
展开京改版七年级数学下册第八章因式分解定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形属于因式分解的是( )
A. B.
C. D.
2、下列各式从左至右是因式分解的是( )
A. B.
C. D.
3、下列因式分解正确的是( )
A. B.
C. D.
4、下列因式分解正确的是( ).
A. B.
C. D.
5、下列各式能用完全平方公式进行因式分解的是( )
A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9
6、下列各式由左到右的变形中,属于分解因式的是( )
A.a(m+n)=am+an
B.a2﹣b2﹣c2=(a+b)(a﹣b)﹣c2
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x
7、已知x,y满足,则的值为( )
A.—5 B.4 C.5 D.25
8、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
9、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
10、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:2a2﹣4ab+2b2=_____.
2、分解因式:______.
3、分解因式_________.
4、分解因式:_______.
5、在实数范围内分解因式:x2﹣3xy﹣y2=___.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)计算:(2a)3•b4÷4a3b2;
(2)计算:(a﹣2b+1)2;
(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.
2、因式分解:.
3、分解因式:
(1);
(2)
4、分解因式
(1)
(2)
5、分解因式:a3﹣a2b﹣4a+4b.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
直接利用因式分解的定义分析得出答案.
【详解】
A. 化为分式的积,不是因式分解,故该选项不符合题意;
B. ,是因式分解,故该选项符合题意;
C. ,不是积的形式,故该选项不符合题意;
D. ,不是积的形式,故该选项不符合题意;
故选B
【点睛】
本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
2、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、D
【解析】
【分析】
各项分解得到结果,即可作出判断.
【详解】
解:A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、因式分解正确,符合题意,
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
5、A
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
【详解】
A. 9x2-6x+1 ,故该选项正确,符合题意;
B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;
故选A
【点睛】
此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
6、C
【解析】
【分析】
把一个多项式分解成几个整式乘积的形式叫因式分解,根绝定义分析判断即可.
【详解】
解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;
B、,等式右边不是几个整式乘积的形式,不符合题意;
C、符合因式分解定义,该选项符合题意;
D、,等式右边不是几个整式乘积的形式,不符合题意.
故选:C
【点睛】
本题考查因式分解的定义,牢记定义内容是解题的关键.
7、A
【解析】
【分析】
根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.
【详解】
解:.
故选:A.
【点睛】
本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.
8、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
9、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
10、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
二、填空题
1、
【解析】
【分析】
先提取公因式2,再利用完全平方公式计算可得.
【详解】
解:原式=.
故答案为:
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
2、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
3、
【解析】
【分析】
直接提取公因式m,进而分解因式得出答案.
【详解】
解:
=m(m+6).
故答案为:m(m+6).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
4、x(x+2y)(x-2y)
【解析】
【分析】
先提取公因式,再用平方差公式进行分解即可.
【详解】
解:x3-4xy2
=x(x2-4y2)
=x(x+2y)(x-2y)
故答案为:x(x+2y)(x-2y)
【点睛】
本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.
5、.
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
三、解答题
1、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).
【解析】
【分析】
(1)先计算乘方,再计算除法可得;
(2)利用完全平方公式计算可得;
(3)先提公因式,再利用平方差分解可得.
【详解】
(1)原式=8a3•b4÷4a3b2
=8a3b4÷4a3b2
=2b2;
(2)原式=[(a﹣2b)+1]2
=(a﹣2b)2+2(a﹣2b)+12
=a2﹣4ab+4b2+2a﹣4b+1;
(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]
=(4a﹣4b)•(﹣2a)
=﹣8a(a﹣b).
【点睛】
本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.
2、(5+m)(5﹣m)
【解析】
【分析】
用平方差公式分解因式.
【详解】
解:原式=(5+m)(5﹣m).
【点睛】
本题考查利用平方差公式分解因式,是重要考点,掌握相关知识是解题关键.
3、(1);(2)
【解析】
【分析】
(1)利用完全平方公式进行分解因式,即可解答;
(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可.
【详解】
(1)原式,
,
;
(2)原式,
,
,
,
.
【点睛】
本题考查了因式分解,解决本题的关键是熟记因式分解的方法.
4、(1)4xy(y+1)2;(2)-5(a-b)2
【解析】
【分析】
(1)提公因式后利用完全平方公式分解即可;
(2)提公因式后利用完全平方公式分解即可.
【详解】
(1),
,
=4xy(y+1)2;
(2),
,
=-5(a-b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.
5、(a﹣b)(a+2)(a﹣2)
【解析】
【分析】
先分组,再提公因式,最后用平方差公式进一步进行因式分解.
【详解】
解:a3﹣a2b﹣4a+4b
=(a3﹣4a)﹣(a2b﹣4b)
=a(a2﹣4)﹣b(a2﹣4)
=(a﹣b)(a2﹣4)
=(a﹣b)(a+2)(a﹣2).
【点睛】
本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.
初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了多项式分解因式的结果是等内容,欢迎下载使用。
北京课改版第八章 因式分解综合与测试随堂练习题: 这是一份北京课改版第八章 因式分解综合与测试随堂练习题,共17页。试卷主要包含了下列变形,属因式分解的是,下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
数学七年级下册第八章 因式分解综合与测试当堂检测题: 这是一份数学七年级下册第八章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了若x2+ax+9=,下列多项式,已知c<a<b<0,若M=|a等内容,欢迎下载使用。