所属成套资源:高考数学(理数)一轮复习刷题小卷练习 (教师版+学生版)
高考数学(理数)一轮复习刷题小卷练习17《平面向量的基本定理及坐标表示》 (教师版)
展开
这是一份高考数学(理数)一轮复习刷题小卷练习17《平面向量的基本定理及坐标表示》 (教师版),共8页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
刷题增分练 17 平面向量的基本定理及坐标表示 刷题增分练⑱ 小题基础练提分快一、选择题1.已知向量a=(-1,2),b=(1,3),则|2a-b|=( )A. B.2C. D.10答案:C解析:由已知,易得2a-b=2(-1,2)-(1,3)=(-3,1),所以|2a-b|==.故选C.2.下列各组向量中,可以作为基底的是( )A.e1=(0,0),e2=(1,-2)B.e1=(-1,2),e2=(5,7)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=答案:B解析:两个不共线的非零向量构成一组基底,A中向量e1为零向量,C,D中两向量共线,B中e1≠0,e2≠0,且e1与e2不共线,故选B.3.如果e1、e2是平面α内两个不共线的向量,那么下列说法中不正确的是( )①a=λe1+μe2(λ、μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a,使a=λe1+μe2的实数对(λ,μ)有无穷多个;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则=.④若实数λ、μ使得λe1+μe2=0,则λ=μ=0.A.①② B.②③C.③④ D.②答案:B解析:由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当λ1λ2=0或μ1μ2=0时不一定成立,应为λ1μ2-λ2μ1=0.故选B.4.若向量a=(2,3),b=(-1,2),则a+b的坐标为( )A.(1,5) B.(1,1)C.(3,1) D.(3,5)答案:A解析:∵向量a=(2,3),b=(-1,2),∴a+b=(1,5).故选A.5.在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A.- B.- C.+ D.+答案:A解析:作出示意图如图所示.=+=+=×(+)+(-)=-.故选A.6.已知向量a=,b=(cosα,1),α∈,且a∥b,则sin=( )A.- B. C. D.-答案:C解析:因为向量a=,b=(cosα,1),且a∥b,所以=tanαcosα=sinα.因为α∈,所以sin=-cosα==.故选C.7.已知点A(1,3),B(4,-1),则与同方向的单位向量是( )A. B. C. D.答案:A解析:因为=(3,-4),所以与同方向的单位向量为=.8.若A,B,C,D四点共线,且满足=(3a,2a)(a≠0),=(2,t),则t等于( )A. B. C.3 D.-3答案:B解析:因为A,B,C,D四点共线,所以∥,故3a·t=2a·2,t=.故选B.二、非选择题9.在平面直角坐标系xOy中,已知a=(,1),若将向量-2a绕坐标原点O逆时针旋转120°得到向量b,则b的坐标为________.答案:(2,-2)解析:因为a=(,1),所以-2a=(-2,-2),如图所示,易知向量-2a与x轴正半轴的夹角α=150°.向量-2a绕坐标原点O逆时针旋转120°得到向量b,由图可知,b在第四象限,且与x轴正半轴的夹角β=30°,所以b=(2,-2).10.已知向量a=(m,4),b=(3,-2),且a∥b,则m=________.答案:-6解析:由题意知-2m-12=0,m=-6.11.设向量a,b满足|a|=2,b=(2,1),且a与b的方向相反,则a的坐标为________.答案:(-4,-2)解析:因为b=(2,1),且a与b的方向相反,所以设a=(2λ,λ)(λ<0),因为|a|=2.所以4λ2+λ2=20,λ2=4,λ=-2.所以a=(-4,-2).12.已知A(2,1),B(3,5),C(3,2),=+t(t∈R),若点P在第二象限,则实数t的取值范围是________.答案:(-5,-3)解析:设点P(x,y),则由=+t(t∈R),得(x-2,y-1)=(1,4)+t(1,1)=(1+t,4+t),所以解得由点P在第二象限,得解得-5<t<-3,所以实数t的取值范围为(-5,-3). 刷题课时增分练⑱ 综合提能力 课时练 赢高分一、选择题1.已知向量a=(-3,-4),则下列能使a=λ e1+μ e2(λ,μ∈R)成立的一组向量e1,e2是( )A.e1=(0,0),e2=(-1,2)B.e1=(-1,3),e2=(2,-6)C.e1=(-1,2),e2=(3,-1)D.e1=,e2=(1,-2)答案:C解析:作为基底,其应该满足的条件为不共线向量.A中,零向量与任意向量共线;B中,e1=(-1,3),e2=(2,-6)共线;C中,e1=(-1,2),e2=(3,-1)不共线;D中,e1=,e2=(1,-2)共线.2.已知向量与向量a=(1,-2)反向共线,||=2,点A的坐标为(3,-4),则点B的坐标为( )A.(1,0) B.(0,1)C.(5,-8) D.(-8,5)答案:A解析:依题意,设=λa,其中λ<0,则有||=|λa|=-λ|a|,即2=-λ,∴λ=-2,=-2a=(-2,4),因此点B的坐标是(-2,4)+(3,-4)=(1,0),故选A.3.如图,向量e1,e2,a的起点与终点均在正方形网格的格点上,则向量a可用基底e1,e2表示为( )A.e1+e2 B.-2e1+e2 C.2e1-e2 D.2e1+e2答案:B解析:由题意可取e1=(1,0),e2=(-1,1),a=(-3,1),设a=xe1+ye2=x(1,0)+y(-1,1)=(x-y,y),则解得故a=-2e1+e2.4.已知向量a=(1,m),b=(3,-2),且(a+b)∥b,则m=( )A.- B. C.-8 D.8答案:A解析:由题意得a+b=(4,m-2).因为(a+b)∥b,所以=,解得m=-.故选A.5.已知圆心为O,半径为1的圆上有不同的三个点A,B,C,其中·=0,存在实数λ,μ满足+λ+μ=0,则实数λ,μ的关系为( )A.λ2+μ2=1 B.+=1 C.λμ=1 D.λ+μ=1答案:A解析:解法一 取特殊点,取C点为优弧AB的中点,此时易得λ=μ=,只有A符合.故选A.解法二 依题意得||=||=||=1,-=λ+μ,两边平方得1=λ2+μ2.故选A.6.如图,=2,=2,=m,=n,若m=,那么n等于( )A. B. C. D.答案:C解析:因为=2,所以C为AB中点,故=+=2,所以=+OB.由=m,=n,所以=,=,所以=+,因为M,P,N三点共线,故+=1,当m=时,n=.故选C.7.已知G是△ABC的重心,过点G作直线MN与AB,AC分别交于点M,N,且=x,=y(x,y>0),则3x+y的最小值是( )A. B. C. D.+答案:D解析:如图.=,=,又∵=+,∴=+,又∵M,G,N三点共线,∴+=1.∵x>0,y>0,∴3x+y=(3x+y)=1+++≥+.当且仅当y=x时取等号.故选D.8.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆与CA,CB分别切于点D,E,点P是图中阴影区域内的一点(不包含边界).若=x=y,则x+y的值可以是( )A.1 B.2 C.4 D.8答案:B解析:设△ABC内切圆的圆心为O,半径为r,连接OD,OE,则OD⊥AC,OE⊥BC,所以3-r+4-r=5,解得r=1,故CD=CE=1,连接DE,则当x+y=1时,P在线段DE上,但线段DE均不在阴影区域内,排除A;在AC上取点M,在CB上取点N,使得CM=2CD,CN=2CE,连接MN,所以=+,则当点P在线段MN上时,+=1,故x+y=2.同理,当x+y=4或x+y=8时,点P不在△ABC内部,排除C,D,故选B.二、非选择题9.如图,在四边形ABCD中,AC和BD相交于点O,设=a,=b,若=2,则=________(用向量a和b表示).答案:a+b解析:由=2知,AB∥DC且||=2||,从而||=2||.所以==(-)=(a-b),所以=+=b+(a-b)=a+b.10.已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.答案:解析:2a+b=(4,2),因为c∥(2a+b),所以4λ=2,得λ=.11.已知e1,e2是平面内两个不共线的非零向量,=2e1+e2,=-e1+λe2,=-2e1+e2,且A,E,C三点共线.(1)求实数λ的值;若e1=(2,1),e2=(2,-2),求的坐标;(2)已知点D(3,5),在(1)的条件下,若ABCD四点构成平行四边形,求点A的坐标.解析:(1)=+=(2e1+e2)+(-e1+λe2)=e1+(1+λ)e2.∵A,E,C三点共线,∴存在实数k,使得=k,即e1+(1+λ)e2=k(-2e1+e2),得(1+2k)e1=(k-1-λ)e2.∵e1,e2是平面内两个不共线的非零向量,∴解得k=-,λ=-.=+=-3e1-e2=(-6,-3)+(-1,1)=(-7,-2).(2)∵ABCD四点构成平行四边形,∴=.设A(x,y),则=(3-x,5-y),又=(-7,-2),∴解得点A(10,7).
相关试卷
这是一份高考数学(理数)一轮复习刷题小卷练习41《复数》 (教师版),共7页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习刷题小卷练习40《推理与证明》 (教师版),共9页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习刷题小卷练习39《算法初步》 (教师版),共13页。试卷主要包含了选择题,非选择题等内容,欢迎下载使用。