终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪科版九年级数学下册第24章圆定向测试练习题(精选)

    立即下载
    加入资料篮
    精品试题沪科版九年级数学下册第24章圆定向测试练习题(精选)第1页
    精品试题沪科版九年级数学下册第24章圆定向测试练习题(精选)第2页
    精品试题沪科版九年级数学下册第24章圆定向测试练习题(精选)第3页
    还剩32页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共35页。
    沪科版九年级数学下册第24章圆定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    2、下列四个图案中,是中心对称图形的是(  )
    A. B.
    C. D.
    3、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    4、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )

    A.45° B.60° C.90° D.120°
    5、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
    A.相离 B.相切 C.相交 D.相交或相切
    6、平面直角坐标系中点关于原点对称的点的坐标是( )
    A. B. C. D.
    7、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    8、在下列图形中,既是中心对称图形又是轴对称图形的是( )
    A. B.
    C. D.
    9、如图,CD是的高,按以下步骤作图:
    (1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
    (2)作直线GH交AB于点E.
    (3)在直线GH上截取.
    (4)以点F为圆心,AF长为半径画圆交CD于点P.
    则下列说法错误的是( )

    A. B. C. D.
    10、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,点关于原点对称的点的坐标是______.
    2、已知正多边形的半径与边长相等,那么正多边形的边数是______.
    3、如图,AB是半圆O的直径,点D在半圆O上,,,C是弧BD上的一个动点,连接AC,过D点作于H.连接BH,则在点C移动的过程中,线段BH的最小值是______.

    4、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

    5、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,在中,,,将边绕着点A逆时针旋转,得到线段,连接交边于点E,过点C作于点F,延长交于点G.

    (1)求证:;
    (2)如图2,当时,求证:;
    (3)如图3,当时,请直接写出的值.
    2、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
    3、已知,P是直线AB上一动点(不与A,B重合),以P为直角顶点作等腰直角三角形PBD,点E是直线AD与△PBD的外接圆除点D以外的另一个交点,直线BE与直线PD相交于点F.
    (1)如图,当点P在线段AB上运动时,若∠DBE=30°,PB=2,求DE的长;

    (2)当点P在射线AB上运动时,试探求线段AB,PB,PF之间的数量关系,并给出证明.
    4、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.

    (1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;
    (2)把图③补成只是中心对称图形,并把中心标上字母P.
    5、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H.
    (1)当直线l在如图①的位置时
    ①请直接写出与之间的数量关系______.
    ②请直接写出线段BH,EH,CH之间的数量关系______.
    (2)当直线l在如图②的位置时,请写出线段BH,EH,CH之间的数量关系并证明;
    (3)已知,在直线l旋转过程中当时,请直接写出EH的长.


    -参考答案-
    一、单选题
    1、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、A
    【分析】
    中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.
    【详解】
    解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,
    故选:A.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.
    3、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    4、B
    【分析】
    设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
    【详解】
    解:设∠ADC=α,∠ABC=β;
    ∵四边形ABCO是菱形,
    ∴∠ABC=∠AOC;
    ∠ADC=β;
    四边形为圆的内接四边形,
    α+β=180°,
    ∴ ,
    解得:β=120°,α=60°,则∠ADC=60°,
    故选:B.
    【点睛】
    该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
    5、B
    【分析】
    圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
    【详解】
    解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
    ⊙O的半径等于圆心O到直线l的距离,
    直线l与⊙O的位置关系为相切,
    故选B
    【点睛】
    本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
    6、B
    【分析】
    根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
    【详解】
    解:平面直角坐标系中点关于原点对称的点的坐标是
    故选B
    【点睛】
    本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
    7、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    8、B
    【分析】
    根据中心对称图形与轴对称图形的定义解答即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,不符合题意;
    B既是中心对称图形又是轴对称图形,符合题意;
    C. 是轴对称图形,不是中心对称图形,不符合题意;
    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
    故选B.
    【点睛】
    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
    9、C
    【分析】
    连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
    【详解】
    解:连接AF、BF,由作法可知,FE垂直平分AB,
    ∴,故A正确;
    ∵CD是的高,
    ∴,故B正确;
    ∵,,
    ∴,故C错误;
    ∵,
    ∴∠AFE=45°,
    同理可得∠BFE=45°,
    ∴∠AFB=90°,
    ,故D正确;
    故选:C.

    【点睛】
    本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
    10、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    二、填空题
    1、(3,4)
    【分析】
    关于原点对称的点,横坐标与纵坐标都互为相反数.
    【详解】
    :由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),
    故答案为:(3,4).
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
    2、六
    【分析】
    设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则,由此即可得到答案.
    【详解】
    解:设这个正多边形的边数为n,
    ∵正多边形的半径与边长相等,
    ∴OA=OB=AB,
    ∴△OAB是等边三角形,
    ∴∠AOB=60°,
    ∴,
    ∴,
    ∴正多边形的边数是六,
    故答案为:六.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.
    3、##
    【分析】
    连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、、三点共线时,最小;求出,在中,,所以,即为所求.
    【详解】
    解:连接,取的中点,连接,


    点在以为圆心,为半径的圆上,
    当、、三点共线时,最小,
    是直径,

    ,,
    ,,
    在中,,

    故答案为:.
    【点睛】
    本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.
    4、
    【分析】
    设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
    【详解】
    解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:

    ∵△ABC绕着点C逆时针旋转60°,
    ∴∠ACM=60°,CA=CM,
    ∴△ACM是等边三角形,
    ∴CM=AM①,∠ACM=∠MAC=60°,
    ∵∠B=90°,AB=BC=1,
    ∴∠BCA=∠CAB=45°,AC==CM,
    ∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
    ∴∠ECM=∠MAF=75°②,
    ∵MF⊥BA,ME⊥BC,
    ∴∠E=∠F=90°③,
    由①②③得△EMC≌△FMA,
    ∴ME=MF,
    而MF⊥BA,ME⊥BC,
    ∴BM平分∠EBF,
    ∴∠CBD=45°,
    ∴∠CDB=180°-∠BCA-∠CBD=90°,
    Rt△BCD中,BD=BC=,
    Rt△CDM中,DM=CM =,
    ∴BM=BD+DM=,
    故答案为:.
    【点睛】
    本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
    5、5
    【分析】
    直接利用直角三角形斜边上的中线等于斜边的一半即可求解.
    【详解】
    解:根据直角三角形斜边上的中线等于斜边的一半,
    即可知道点到点A,B,C的距离相等,
    如下图:



    故答案是:5.
    【点睛】
    本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.
    三、解答题
    1、
    (1)见解析
    (2)见解析
    (3)
    【分析】
    (1)由旋转的性质得AB=AD,所以,再根据三角形内角和定理可证明即可得到结论;
    (2)连接,根据ASA证明≌得,是等边三角形,从而得出,再运用AAS证明≌得,由勾股定理可得出,从而 可得结论;
    (3)证明平分,作于点,根据勾股定理得,代入求值即可.
    (1)
    ∵边绕着点逆时针旋转得到线段,

    ∴.
    ∵,
    ∴.
    ∴.
    ∵,

    又,且∠AEB=∠CEF
    ∴.
    ∴.
    (2)
    连接.

    在和中,
    ∵,
    ∴≌(ASA).
    ∴.
    ∴,即.
    在和中,
    ∵,
    ∴≌(AAS).
    ∴.
    ∵,
    ∴在中,,
    即.
    ∵,,
    ∴是等边三角形.
    ∴.
    (3)

    ∵,,

    ∵.
    ∵,
    ∴.
    ∴平分.
    作于点,

    ∴.
    ∴在中,.
    ∵≌,≌,
    ∴,,.
    ∴在中,,
    ∵,
    ∴.
    【点睛】
    本题属于几何变换综合题,考查了旋转变换,等腰直角三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形.
    2、(1)①③;(2)点N的横坐标;(3)或.
    【分析】
    (1)在坐标系中作出圆及三个函数图象,即可得;
    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
    【详解】
    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;
    (2)如图所示:

    ∵直线l是的关联直线,
    ∴直线l的临界状态是与相切的两条直线和,
    当临界状态为时,连接TM,
    ∴,,
    ∵当时,,
    当时,,
    ∴,
    ∴为等腰直角三角形,
    ∴,

    ∴点,
    同理可得当临界状态为时,
    点,
    ∴点N的横坐标;
    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;

    设点,直线HB的解析式为,直线HD的解析式为,
    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最大值为,
    ②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
    设点,直线HB的解析式为,直线HD的解析式为,

    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最小值为,
    ③当时,两条直线与圆无公共点,不符合题意,
    ∴,
    综上可得:或.
    【点睛】
    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
    3、(1) (2)PF=AB-PB或PF=AB+PB,理由见解析
    【分析】
    (1)根据△PBD等腰直角三角形,PB=2,求出DB的长,由⊙O是△PBD的外接圆,∠DBE=30°,可得答案;
    (2)根据同弧所对的圆周角,可得∠ADP=∠FBP,由△PBD等腰直角三角形,得∠DPB=∠APD=90°,DP=BP,可证△APD≌△FPB,可得答案.
    【详解】
    解:(1)由题意画以下图,连接EP,

    ∵△PBD等腰直角三角形,⊙O是△PBD的外接圆,
    ∴∠DPB=∠DEB=90°,
    ∵PB=2,
    ∴ ,
    ∵∠DBE=30°,

    (2)①点P在点A、B之间,
    由(1)的图根据同弧所对的圆周角相等,可得:
    ∠ADP=∠FBP,
    又∵△PBD等腰直角三角形,
    ∴∠DPB=∠APD=90°,DP=BP,
    在△APD和△FPB中

    ∴△APD≌△FPB
    ∴AP=FP,
    ∵AP+PB=AB
    ∴FP+PB=AB,
    ∴FP=AB-PB,
    ②点P在点B的右侧,如下图:

    ∵△PBD等腰直角三角形,
    ∴∠DPB=∠APF=90°,DP=BP,
    ∵∠PBF+∠EBP=180°,∠PDA+∠EBP=180°,
    ∴∠PBF=∠PDA,
    在△APD和△FPB中

    ∴△APD≌△FPB
    ∴AP=FP,
    ∴AB+PB=AP,
    ∴AB+PB=PF,
    ∴PF= AB+PB.
    综上所述,FP=AB-PB或PF= AB+PB.
    【点睛】
    本题考查了圆的性质,等腰直角三角形,三角形全等的判定,做题的关键是注意(2)的两种情况.
    4、
    (1)见解析
    (2)见解析
    【分析】
    (1)根据轴对称图形,中心对称图形的性质画出图形即可.
    (2)根据中心对称图形的定义画出图形即可.
    (1)
    解:图形如图①②所示.
    (2)
    解:图形如图③所示,点P即为所求作.
    【点睛】
    本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
    5、(1)①;②;(2);证明见解析;(3)或.
    【分析】
    (1)①,根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CF⊥DE,得出CF平分∠ECD即可;
    ②,过点C作CG⊥BE于G,根据BC=EC,得出∠ECG=∠BCG=,根据∠ECH=∠HCD=,可得CG=HG,根据勾股定理在Rt△GHC中,,根据GE=,得出即可;
    (2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;
    (3)或,根据,分两种情况,当∠ABE=90°-15°=75°时,BC=CE,先证△CDE为等边三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根据CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根据勾股定理HE=,当∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根据30°直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可.
    【详解】
    解:(1)①
    ∵CE=BC,四边形ABCD为正方形,
    ∴BC=CD=CE,
    ∵CF⊥DE,
    ∴CF平分∠ECD,
    ∴∠ECH=∠HCD,
    故答案为:∠ECH=∠HCD;

    ②,过点C作CG⊥BE于G,
    ∵BC=EC,
    ∴∠ECG=∠BCG=,
    ∵∠ECH=∠HCD=,
    ∴∠GCH=∠ECG+∠ECF=+,
    ∴∠GHC=180°-∠HGC+∠GCH=180°-90°-45°=45°,
    ∴CG=HG,
    在Rt△GHC中,
    ∴,
    ∵GE=,
    ∴GH=GE+EH=,
    ∴,
    ∴,
    ∴,
    故答案是:;

    (2),
    证明:过点C作交BE于点M,

    则,
    ∴⁰,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴,,
    ∴是等腰直角三角形,
    ∴,
    ∵,
    ∴,
    (3)或,
    ∵,分两种情况,
    当∠ABE=90°-15°=75°时,
    ∵BC=CE,
    ∴∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB==180°-15°-15°=150°,
    ∴∠DCE=∠BCE-∠BCD=150°=90°=60°,
    ∵CE=CD,
    ∴△CDE为等边三角形,
    ∴DE=CD=AB=2,∠DEC=60°,
    ∴∠FEH=∠DEC=∠CEB=60°-15°=45°,
    ∵CF⊥DE,
    ∴DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,
    ∴EF=HF=1,
    ∴HE=,

    当∠ABE=90°+15°=105°,
    ∵BC=CE,∠CBE=∠CEB=15°,
    ∴∠BCE=180°-∠CBE-∠CEB=150°,
    ∴∠DCE=360°-∠DCB-∠BCE=120°,
    ∵CE=BC=CD,CH⊥DE,
    ∴∠FCE=,
    ∴∠FEC=180°-∠CFE-∠FCE=30°,
    ∴CF=,
    ∴EF=,
    ∵∠HEF=∠CEB+∠CEF=15°+30°=45°,
    ∴∠FHE=180°-∠HFE-∠FEH=45°=∠FEH,
    ∴FH=FE,
    ∴EH=,
    ∴或.

    【点睛】
    本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键.

    相关试卷

    初中数学第24章 圆综合与测试达标测试:

    这是一份初中数学第24章 圆综合与测试达标测试,共25页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试精练:

    这是一份初中沪科版第24章 圆综合与测试精练,共24页。

    2020-2021学年第24章 圆综合与测试测试题:

    这是一份2020-2021学年第24章 圆综合与测试测试题,共29页。试卷主要包含了在圆内接四边形ABCD中,∠A,等边三角形等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map