终身会员
搜索
    上传资料 赚现金

    2022年精品解析沪科版九年级数学下册第24章圆定向练习试题(名师精选)

    立即下载
    加入资料篮
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试题(名师精选)第1页
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试题(名师精选)第2页
    2022年精品解析沪科版九年级数学下册第24章圆定向练习试题(名师精选)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试课堂检测

    展开

    这是一份数学九年级下册第24章 圆综合与测试课堂检测,共28页。


    沪科版九年级数学下册第24章圆定向练习

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列图形中,是中心对称图形的是(   

    A. B.

    C. D.

    2、如图,AB是⊙O的直径,弦,则阴影部分图形的面积为(   

    A. B. C. D.

    3、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(   

    A. B. C. D.

    4、图2是由图1经过某一种图形的运动得到的,这种图形的运动是(   

    A.平移 B.翻折 C.旋转 D.以上三种都不对

    5、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    6、下列图形中,既是轴对称图形又是中心对称图形的是(      

    A. B. C. D.

    7、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).

    A.20° B.25° C.30° D.40°

    8、下列图形中,既是中心对称图形也是轴对称图形的是(   

    A. B. C. D.

    9、如图,PAPB是⊙O的切线,AB是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为(  

    A.70° B.50° C.20° D.40°

    10、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是(   

    A. B.1 C.2 D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如图,正三角形ABC的边长为DEF 分别为BCCAAB的中点,以ABC三点为圆心,长为半径作圆,图中阴影部分面积为______.

    2、到点的距离等于8厘米的点的轨迹是__.

    3、如图,在平面直角坐标系中,点N是直线上动点,M上动点,若点C的坐标为,且y轴相切,则长度的最小值为____________.

    4、已知OI分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.

    5、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在RtABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点CA的对应点分别为EF.点E落在BA上,连接AF

    (1)若∠BAC=40°,求∠BAF的度数;

    (2)若AC=8,BC=6,求AF的长.

    2、如图,已知在中,DEBC边上的点,将绕点A旋转,得到,连接

    (1)当时,时,求证:

    (2)当时,有怎样的数量关系?请写出,并说明理由.

    (3)在(2)的结论下,当BDDE满足怎样的数量关系时,是等腰直角三角形?(直接写出结论,不必证明)

    3、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为.若旋转后MN两点重合成一点C(即构成),设

    (1)的周长为_______;

    (2)若,求x的值.

    4、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D

    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);

    (2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长.

    5、如图,四边形ABCD是正方形.△ABE是等边三角形,M为对角线 BD(不含BD点)上任意一点,将线段BM绕点B逆时针旋转60°得到BN,连接 ENAMCM.请判断线段 AM 和线段 EN 的数量关系,并说明理由.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.

    【详解】

    A、不是中心对称图形,不符合题意;

    B、不是中心对称图形,不符合题意;

    C、是中心对称图形,符合题意;

    D、不是中心对称图形,不符合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.

    2、D

    【分析】

    根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.

    【详解】

    解:设ABCD交于点E

    AB是⊙O的直径,弦CDABCD=2,如图,

    CE=CD=,∠CEO=∠DEB=90°,

    ∵∠CDB=30°,

    ∴∠COB=2∠CDB=60°,

    ∴∠OCE=30°,

    又∵,即

    在△OCE和△BDE中,

    ∴△OCE≌△BDEAAS),

    ∴阴影部分的面积S=S扇形COB=

    故选D.

    【点睛】

    本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.

    3、A

    【分析】

    连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.

    【详解】

    解:连结OC

    ∵以边上一点为圆心作,恰与边分别相切于点A,

    DC=ACOC平分∠ACD

    ∴∠ACD=90°-∠B=60°,

    ∴∠OCD=∠OCA==30°,

    在Rt△ABC中,AC=ABtanB=3×

    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=

    OD=OA=1,DC=AC=

    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,

    S阴影=

    故选择A.

    【点睛】

    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.

    4、C

    【详解】

    解:根据图形可知,这种图形的运动是旋转而得到的,

    故选:C.

    【点睛】

    本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.

    5、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    6、D

    【详解】

    解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;

    .不是轴对称图形,是中心对称图形,故本选项不符合题意;

    .是轴对称图形,不是中心对称图形,故本选项不符合题意;

    .既是轴对称图形,又是中心对称图形,故本选项符合题意.

    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    7、B

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    8、A

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;

    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,不是轴对称图形,故此选项不符合题意;

    D、是中心对称图形,不是轴对称图形,故此选项不符合题意.

    故选:A.

    【点睛】

    本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.

    9、D

    【分析】

    首先连接OAOB,由PAPB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.

    【详解】

    解:连接OAOB

    PAPB为⊙O的切线,

    ∴∠OAP=∠OBP=90°,

    ∵∠ACB=70°,

    ∴∠AOB=2∠P=140°,

    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.

    故选:D

    【点睛】

    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.

    10、A

    【分析】

    CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据∠BCH=30°求解即可.

    【详解】

    解:如图,取BC的中点G,连接MG

    ∵旋转角为60°,

    ∴∠MBH+∠HBN=60°,

    又∵∠MBH+∠MBC=∠ABC=60°,

    ∴∠HBN=∠GBM

    CH是等边△ABC的对称轴,

    HB=AB

    HB=BG

    又∵MB旋转到BN

    BM=BN

    在△MBG和△NBH中,

    ∴△MBG≌△NBHSAS),

    MG=NH

    根据垂线段最短,MGCH时,MG最短,即HN最短,

    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,

    MG=CG=

    HN=

    故选A.

    【点睛】

    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.

    二、填空题

    1、

    【分析】

    阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.

    【详解】

    连接AD,如图所示

    ADBC

    D点是BC的中点

    由勾股定理得

    S半圆=

    S阴影=SABCS半圆

    故答案为:

    【点睛】

    本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.

    2、以点为圆心,8厘米长为半径的圆

    【分析】

    由题意直接根据圆的定义进行分析即可解答.

    【详解】

    到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.

    故答案为:以点为圆心,8厘米长为半径的圆.

    【点睛】

    本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.

    3、-2

    【分析】

    由图可知,当CNABCMN三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.

    【详解】

    由图可知,当CNABCMN三点共线时,长度最小

    ∵直线AB的解析式为

    x=0时,y=5,当y=0时,x=5

    B(0,5),A(5,0)

    AO=BO,△AOB是等腰直角三角形

    ∴∠BAO=90°

    CNAB时,则△ACN是等腰直角三角形

    CN=AN

    C

    AC=7

    AC2=CN2+AN2=2CN2

    CN=

    CMN三点共线时,长度最小

    MN=CN-CM=-2

    故答案为:-2.

    【点睛】

    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.

    4、140

    【分析】

    的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.

    【详解】

    解:如图所示,作的外接圆,

    ∵点I的内心,

    BICI分别平分

    ∵点O的外心,

    故答案为:140.

    【点睛】

    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.

    5、

    【分析】

    过点轴,交于点,根据中位线定理可得,设点轴的距离为G,则△AOE边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.

    【详解】

    解:过点轴,交于点

    A(-1,0),B(2,0),

    D为线段BC的中点,轴,

    设点轴的距离为

    则△AOE边上的高

    的外接圆,

    则当点位于图中处时,最大,

    因为

    为等边三角形,

    ,

    ,

    故答案为:.

    【点睛】

    本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.

    三、解答题

    1、

    (1)65°

    (2)

    【分析】

    (1)根据三角形的内角和定理得到∠ABC=50°,根据旋转的性质得到∠EBF=∠ABC=50°,AB=BF,根据三角形的内角和定理即可得到结论;

    (2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论.

    【小题1】

    解:在RtABC中,∠C=90°,∠BAC=40°,

    ∴∠ABC=50°,

    ∵将△ABC绕着点B逆时针旋转得到△FBE

    ∴∠EBF=∠ABC=50°,AB=BF

    ∴∠BAF=∠BFA=(180°-50°)=65°;

    【小题2】

    ∵∠C=90°,AC=8,BC=6,

    AB=10,

    ∵将△ABC绕着点B逆时针旋转得到△FBE

    BE=BC=6,EF=AC=8,

    AE=AB-BE=10-6=4,

    AF=

    【点睛】

    本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.

    2、(1)见解析;(2)∠DAEBAC,见解析;(3)DEBD,见解析

    【分析】

    (1)根据旋转的性质可得ADAD′,∠CAD′=∠BAD,然后求出∠DAE=60°,从而得到∠DAE=∠DAE,再利用“边角边”证明△ADE和△ADE全等,根据全等三角形对应边相等证明即可;

    (2)根据旋转的性质可得ADAD′,再利用“边边边”证明△ADE和△ADE全等,然后根据全等三角形对应角相等求出∠DAE=∠DAE,然后求出∠BAD+∠CAE=∠DAE,从而得解;

    (3)求出∠DCE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得DECD′,再根据旋转的性质解答即可.

    【详解】

    (1)证明:∵△ABD绕点A旋转得到△ACD′,

    ADAD′,∠CAD′=∠BAD

    ∵∠BAC=120°,∠DAE=60°,

    ∴∠DAE=∠CAD′+∠CAE

    =∠BAD+∠CAE

    =∠BAC−∠DAE

    =120°−60°

    =60°,

    ∴∠DAE=∠DAE

    在△ADE和△ADE中,

    ∴△ADE≌△ADESAS),

    DEDE

    (2)解:∠DAEBAC

    理由如下:在△ADE和△ADE中,

    ∴△ADE≌△ADESSS),

    ∴∠DAE=∠DAE

    ∴∠BAD+∠CAE=∠CAD′+∠CAE=∠DAE=∠DAE

    ∴∠DAEBAC

    (3)解:∵∠BAC=90°,ABAC

    ∴∠B=∠ACB=∠ACD′=45°,

    ∴∠DCE=45°+45°=90°,

    ∵△DEC是等腰直角三角形,

    DECD′,

    由(2)DEDE

    ∵△ABD绕点A旋转得到△ACD′,

    BDCD

    DEBD

    【点睛】

    本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.

    3、

    (1)4

    (2)

    【分析】

    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN

    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.

    (1)

    解:由旋转知:AM=AC=1,BN=BC=3-x

    ∴△ABC的周长为:AC+AB+BC=MN=4;

    故答案为:4;

    (2)

    解:∵α+β=270°,

    ∴∠CAB+∠CBA=360°-270°=90°,

    ∴∠ACB=180°-(∠CAB+∠CBA

    =180°-90°

    =90°,

    AC2+BC2=AB2

    即12+(3-x2=x2

    解得

    【点睛】

    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.

    4、(1)作图见解析;(2)

    【分析】

    (1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;

    (2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.

    【详解】

    解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CDOD

    由题意,AD为⊙O的切线,

    OCAC,且OC为半径,

    AC为⊙O的切线,

    AC=AD

    ∴∠ACD=∠ADC

    CD=BD

    ∴∠B=∠DCB

    ∵∠ADC=∠B+∠BCD

    ∴∠ACD=∠ADC=2∠DCB

    ∵∠ACB=90°,

    ∴∠ACD+∠DCB=90°,

    即:3∠DCB=90°,

    ∴∠DCB=30°,

    OC=OD

    ∴∠DCB=∠ODC=30°,

    ∴∠COD=180°-2×30°=120°,

    ∵∠DCB=∠B=30°,

    ∴在RtABC中,∠BAC=60°,

    AO平分∠BAC

    ∴∠CAO=∠DAO=30°,

    ∴在RtACO中,

    【点睛】

    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.

    5、AM=EN,理由见解析

    【分析】

    根据旋转性质和等边三角形的性质可证得∠ABM=∠EBNBM=BNAB=BE,根据全等三角形的判定证明△ABM≌△EBN即可得出结论.

    【详解】

    解:AM=EN,理由为:

    ∵△ABE是等边三角形,

    AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,

    ∵线段BM绕点B逆时针旋转60°得到BN

    BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,

    ∴∠ABM=∠EBN

    在△ABM和△EBN中,

    ∴△ABM≌△EBNSAS),

    AM=EN

    【点睛】

    本题考查等边三角形的性质、旋转性质、全等三角形的判定与性质,熟练掌握用全等三角形证明线段相等是解答的关键.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共27页。

    沪科版九年级下册第26章 概率初步综合与测试巩固练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试巩固练习,共21页。试卷主要包含了在一个不透明的布袋中,红色,下列说法正确的有等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共32页。试卷主要包含了如图,点A,下列判断正确的个数有等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map