初中数学沪科版九年级下册第24章 圆综合与测试课后测评
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共31页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断正确的个数有,点P关于原点对称的点的坐标是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,,,都是上的点,,垂足为,若,则的度数为( )A. B. C. D.2、下列图案中既是轴对称图形,又是中心对称图形的是( )A. B.C. D.3、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.A.3π B.6π C.12π D.18π4、下列图形中,是中心对称图形的是( )A. B.C. D.5、在下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.6、如图,在中,,,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )A. B. C. D.7、下列判断正确的个数有( )①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个8、如图,AB为的直径,,,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )A. B. C.3 D.9、点P(-3,1)关于原点对称的点的坐标是( )A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)10、的边经过圆心,与圆相切于点,若,则的大小等于( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________2、在平面直角坐标系中,已知点与点关于原点对称,则________,________.3、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.4、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.三、解答题(5小题,每小题10分,共计50分)1、如图,⊙O的半径为10cm,弦AB垂直平分半径OC,垂足为点D.(1)弦AB的长为 .(2)求劣弧的长.2、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.3、在平面直角坐标系xOy中,旋转角满足,对图形M与图形N给出如下定义:将图形M绕原点逆时针旋转得到图形.P为图形上任意一点,Q为图形N上的任意一点,称PQ长度的最小值为图形M与图形N的“转后距”.已知点,点,点.(1)当时,记线段OA为图形M.①画出图形;②若点C为图形N,则“转后距”为______;③若线段AC为图形N,求“转后距”;(2)已知点,点,记线段AB为图形M,线段PQ为图形N,对任意旋转角,“转后距”大于1,直接写出t的取值范围.4、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:证明:如图②,连接,是⊙O的直径,,①________.(1)为⊙O的切线,,,(2)由(1)(2)得,②________________.平分.,③________,.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若,求的长.5、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长. -参考答案-一、单选题1、B【分析】连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.【详解】解:如下图所示,连接OC.∵,∴,.∴.∵.∴.∴∵和分别是所对的圆周角和圆心角,∴.故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.2、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.3、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.5、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.6、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,,,,在中,,,,,,有勾股定理可知:,阴影部分的面积=扇形扇形 .故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.7、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.8、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.9、C【分析】据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.【详解】解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).故选:C.【点睛】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.10、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.【详解】解:连接, ,,与圆相切于点,,,故选:A.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.二、填空题1、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.【详解】解:过点作轴,交于点,∵A(-1,0),B(2,0),∴,,∵D为线段BC的中点,轴,∴,∴,设点到轴的距离为,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,∴,∴为等边三角形,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.2、2 2 【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.【详解】解:∵点和点关于原点对称,∴,∴,故答案为:2;2.【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.3、35°【分析】根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°−30°×2=40°,∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.故答案为:35°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.4、140【分析】作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作的外接圆,∵点I是的内心,∴BI,CI分别平分和,∴,,∵,∴,∴,∴,∵点O是的外心,∴,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.5、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.三、解答题1、(1),(2).【分析】(1)根据弦AB垂直平分半径OC,OC=OB=10cm,得出OD=CD=,∠ODB=90°,根据勾股定理,可求AB=2BD=2×;(2)根据锐角三角函数定义求出cos∠DOB=,得出∠DOB=60°,利用弧长公式求出即可.【详解】解:(1)∵弦AB垂直平分半径OC,OC=OB=10cm,∴OD=CD=,∠ODB=90°,∴,∴AB=2BD=2×,故答案为;(2)cos∠DOB=,∴∠DOB=60°,∴的度数为2×60°=120°,∴.【点睛】本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.2、边长为,边心距为【分析】过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.【详解】解:过点O作OE⊥BC,垂足为E,∵正方形ABCD是半径为R的⊙O内接四边形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6, ∴BE=OE. 在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE= BE=, ∴BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为.【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.3、(1)①OA′,图形见详解;②2;③ “转后距”为;(2)t的取值范围为t<-5或0<t<2或.【分析】(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′.②∵点C为图形N,求出OC=2最短距离;③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF=即可;(2)点,点,可求tan∠OPQ=,得出当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,列不等式,解得,当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.【详解】解:(1)①当时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形即OA′;②∵点C为图形N,OC=2为图形M与图形N的“转后距”,∴“转后距”为2,故答案为2;③线段AC为图形N,过点O作OF⊥AC于F,根据勾股定理OA=,AC=,∴OA=AC=OC=2,∴△OAC为等边三角形,∵OF⊥AC,∴AF=CF=1,∴OF=,∴“转后距”为;(2)∵点,点,∴tan∠OPQ=,∴当点P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,∵CB=4-2=2=AC,∠ACO=60°,∴∠CAB=∠ABC=30°,分三种情况,当°,当点P在点B右边,PB=t-4,BD>1,∴BPsin60>1,∴,解得;当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,∵PB=4-t,∴PB=2PE>2×1即4-t>2,解得t<2,当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,∴t>0,∴0<t<2;当点P在B′左边,PB′>1,OB′=OB=4,∴t<-5;综合t的取值范围为t<-5或0<t<2或.【点睛】本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.4、(1),,;(2)【分析】(1)由是⊙O的直径,得到∠ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明;(2)在直角△ODE中利用勾股定理求解即可.【详解】解:(1)如图②,连接,是⊙O的直径,,∠ODB.(1)为⊙O的切线,,,(2)由(1)(2)得,∠ODA=∠BDE.平分,∴.,∠ODA,.故答案为:① ,② ,③ ;(2)为的切线,.,,,.在中,.【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.5、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.【分析】(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF.理由:延长FD至G,使DG=BE,连接AG,如图①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE.理由:在DC上截取DH=BE,连接AH,如图②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,∵K为BC边的中点,∴CK=BC=2,同理可证△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.综上,线段EF的长为或.【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试同步练习题,共29页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
这是一份初中第24章 圆综合与测试达标测试,共37页。试卷主要包含了下列判断正确的个数有,在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共30页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。