


初中数学沪科版九年级下册第24章 圆综合与测试精练
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
A.45°B.60°C.90°D.120°
2、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )
A.1B.C.D.2
3、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )
A.6B.C.3D.
4、下面的图形中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
5、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cm.
A.3πB.6πC.12πD.18π
6、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为( )
A.B.C.D.8
7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )
A.36 cmB.27 cmC.24 cmD.15 cm
8、下列汽车标志中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
9、平面直角坐标系中点关于原点对称的点的坐标是( )
A.B.C.D.
10、如图,是的直径,弦,垂足为,若,则( )
A.5B.8C.9D.10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.
2、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)
3、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.
4、如图,PA,PB分别切⊙O于点A,B,Q是优弧上一点,若∠P=40°,则∠Q的度数是________.
5、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
三、解答题(5小题,每小题10分,共计50分)
1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.
(1)求弦AC的长.
(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
(3)当OE=1时,求点A与点D之间的距离(直接写出答案).
2、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.
3、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.
(1)求证:直线CD是⊙O的切线;
(2)若,,求OC的长.
4、如图,和中,,,,连接,点M,N,P分别是的中点.
(1)请你判断的形状,并证明你的结论.
(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.
5、已知:如图,A为上的一点.
求作:过点A且与相切的一条直线.
作法:①连接OA;
②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;
③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);
④作直线PA.
直线PA即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接BA.
由作法可知.
∴点A在以OP为直径的圆上.
∴( )(填推理的依据).
∵OA是的半径,
∴直线PA与相切( )(填推理的依据).
-参考答案-
一、单选题
1、B
【分析】
设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.
【详解】
解:设∠ADC=α,∠ABC=β;
∵四边形ABCO是菱形,
∴∠ABC=∠AOC;
∠ADC=β;
四边形为圆的内接四边形,
α+β=180°,
∴ ,
解得:β=120°,α=60°,则∠ADC=60°,
故选:B.
【点睛】
该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.
2、B
【分析】
利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.
【详解】
解: 在Rt中,,
∴BC=3,,
连接CD,过点C作CE⊥AB于E,
∵,
∴,
解得,
∵CB=CD,CE⊥AB,
∴,
∴,
故选:B.
【点睛】
此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.
3、D
【分析】
如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
【详解】
解:如图所示,设圆的圆心为O,连接OC,OB,
∵AC,AB都是圆O的切线,
∴∠OCA=∠OBA=90°,OC=OB,
又∵OA=OA,
∴Rt△OCA≌Rt△OBA(HL),
∴∠OAC=∠OAB,
∵∠DAC=60°,
∴,
∴∠AOB=30°,
∴OA=2AB=6,
∴,
∴圆O的直径为,
故选D.
【点睛】
本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
4、A
【详解】
解:A、既是轴对称图形又是中心对称图形,此项符合题意;
B、是中心对称图形,不是轴对称图形,此项不符题意;
C、是轴对称图形,不是中心对称图形,此项不符题意;
D、是轴对称图形,不是中心对称图形,此项不符题意;
故选:A.
【点睛】
本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
5、B
【分析】
利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.
【详解】
解:它的侧面展开图的面积=×2×2×3=6(cm2).
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
6、A
【分析】
过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.
【详解】
解:如图,过点作于点,连接,
AB是的直径,,,
,
在中,
故选A
【点睛】
本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.
7、C
【分析】
连接,过点作于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.
【详解】
解:连接,过点作于点,交于点,如图所示:
则,
的直径为,
,
在中,,
,
即水的最大深度为,
故选:C.
【点睛】
本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.
8、C
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项符合题意;
D、不是轴对称图形,是中心对称图形,故此选项不符合题意;
故选:C.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
9、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
10、C
【分析】
连接,根据垂径定理可得,设的半径为,则,进而勾股定理列出方程求得半径,进而求得
【详解】
解:如图,连接,
∵是的直径,弦,
∴
设的半径为,则
在中,,
即
解得
即
故选C
【点睛】
本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
二、填空题
1、65
【分析】
根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.
【详解】
解:∵PA是⊙O的切线,
∴OA⊥AP,
∴,
∵∠APO=25°,
∴,
故答案为:65.
【点睛】
本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
2、##
【分析】
设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
【详解】
解:设与AC相交于点D,过点D作,垂足为点E,
∵,,,
∴,
∴为直角三角形,
∴,
∵绕点B顺时针方向旋转45°得到,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
,
,
,
,
故答案为:.
【点睛】
题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
3、
【分析】
根据旋转找出规律后再确定坐标.
【详解】
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组循环,
∵,
∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
∵,
∴,
∴翻转前进的距离为:,
如图,过点B作BG⊥x于G,
则∠BAG=60°,
∴,
,
∴,
∴点B的坐标为.
故答案为:.
【点睛】
题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
4、70°度
【分析】
连接OA、OB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.
【详解】
解:连接OA、OB,
∵PA,PB分别切⊙O于点A,B,
∴∠OAP=∠OBP=90°,又∠P=40°,
∴∠AOB=360°-90°-90°-40°=140°,
∴∠Q=∠AOB=70°,
故答案为:70°.
【点睛】
本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.
5、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
三、解答题
1、
(1)8
(2)
(3)或.
【分析】
(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
(3)分两种情况讨论,由相似三角形和勾股定理可求解.
(1)
如图2,过点O作OH⊥AC于点H,
由垂径定理得:AH=CH=AC,
在Rt△OAH中,,
∴设OH=3x,AH=4x,
∵OH2+AH2=OA2,
∴(3x)2+(4x)2=52,
解得:x=±1,(x=﹣1舍去),
∴OH=3,AH=4,
∴AC=2AH=8;
(2)
如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,
∵∠DEO=∠AEC,
∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;
,
∴∠ACD≠∠DOE
∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
∴当△DOE与△AEC相似时,∠DOE=∠A,
∴OD∥AC,
∴,
∵OD=OA=5,AC=8,
∴,
∴,
∵∠AGE=∠AHO=90°,
∴GE∥OH,
∴△AEG∽△AOH,
∴,
∴,
∴,
∴,,
在Rt△CEG中,;
(3)
当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,
由(1)可得 OH=3,AH=4,AC=8,
∵OE=1,
∴AE=4,ME=6,
∵EG∥OH,
∴△AEG∽△AOH,
∴,
∴AG=,EG=,
∴GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=2;
当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,
同理可求EG=,AG=,AE=6,GC=,
∴EC===,
∵AM是直径,
∴∠ADM=90°=∠EGC,
又∵∠M=∠C,
∴△EGC∽△ADM,
∴,
∴,
∴AD=,
综上所述:AD的长是或
【点睛】
本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
2、边长为,边心距为
【分析】
过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.
【详解】
解:过点O作OE⊥BC,垂足为E,
∵正方形ABCD是半径为R的⊙O内接四边形,R=6,
∴∠BOC==90°,∠OBC=45°,OB=OC=6,
∴BE=OE.
在Rt△OBE中,∠BEO=90°,由勾股定理可得
∵OE2+BE2=OB2,
∴OE2+BE2=36,
∴OE= BE=,
∴BC=2BE=,
即半径为6的圆内接正方形ABCD的边长为,边心距为.
【点睛】
本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.
3、(1)见解析;(2)
【分析】
(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
从而可得,则可求得OC的长.
【详解】
(1)连接OD,
∵,
∴.
又∵,
∴,
∴.
在与中,
∴,
∴.
又∵,
∴,
∴是的切线.
(2)∵,
∴,
∴,
∴.
又∵,
∴,
∴,
∴,
∴,
∴,
∴OC=15
【点睛】
本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
4、
(1)是等腰直角三角形,证明见解析
(2)周长最小值为。最大值为
【分析】
(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;
(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.
(1)
连接BD,CE,如图,
∵,,,
∴
∴
∴
∴BD=CE,
∵点M,N,P分别是的中点
∴//,,PN//BD,PN=BD
∴PM=PN,
∵PN//BD
∴∠PNC=∠DBC
∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°
∴
∴是等腰直角三角形;
(2)
由(1)知,是等腰直角三角形
∴
∴的周长为
∵
∴的周长为
当BD最小时即点D在AB上,此时周长最小,
∵AB=8,AD=3
∴BD的最小值为AB-AD=8-3=5
∴周长最小为
当点D在BA的延长线上时,BD最大,此时周长最大,
∴BD=AB+AD=8+3=11
∴周长最大为
【点睛】
此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.
5、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理
【分析】
(1)根据所给的几何语言作出对应的图形即可;
(2)根据圆周角定理和切线的判定定理解答即可.
【详解】
解:(1)补全图形如图所示,直线AP即为所求作;
(2)证明:连接BA,
由作法可知,
∴点A在以OP为直径的圆上,
∴(直径所对的圆周角是直角),
∵OA是的半径,
∴直线PA与相切(切线的判定定理),
故答案为:直径所对的圆周角是直角,切线的判定定理.
【点睛】
本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.
沪科版九年级下册第24章 圆综合与测试同步训练题: 这是一份沪科版九年级下册第24章 圆综合与测试同步训练题,共31页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
2020-2021学年第24章 圆综合与测试测试题: 这是一份2020-2021学年第24章 圆综合与测试测试题,共29页。试卷主要包含了在圆内接四边形ABCD中,∠A,等边三角形等内容,欢迎下载使用。
沪科版九年级下册第24章 圆综合与测试习题: 这是一份沪科版九年级下册第24章 圆综合与测试习题,共27页。