初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题
展开这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共32页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算半径为1,圆心角为的扇形面积为( )
A. B. C. D.
2、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )
A.3 B.2 C.1 D.
3、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A. B. C. D.
4、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
A.140° B.100° C.80° D.40°
5、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )
A.30° B.60°
C.90° D.120°
6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于( )
A.10 B.6 C.6 D.12
8、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
9、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
10、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.
2、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.
3、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .
4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.
5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知为的直径,切于点C,交的延长线于点D,且.
(1)求的大小;
(2)若,求的长.
2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
3、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.
4、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:
(1)当时,求的值;
(2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
(3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.
-参考答案-
一、单选题
1、B
【分析】
直接根据扇形的面积公式计算即可.
【详解】
故选:B.
【点睛】
本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
2、B
【分析】
连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
【详解】
解:连接OC,如图
∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
3、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
4、C
【分析】
,,,进而求解的值.
【详解】
解:由题意知
∵
∴
∴
∵
∴
故选C.
【点睛】
本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
5、B
【分析】
由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
【详解】
解:因为每次旋转相同角度,旋转了六次,
且旋转了六次刚好旋转了一周为360°,
所以每次旋转相同角度 .
故选:B.
【点睛】
本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
6、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
C、是轴对称图形,是中心对称图形,故此选项不符合题意;
D、不是轴对称图形,是中心对称图形,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、D
【分析】
连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
【详解】
解:连接OB,OC,
∵∠BAC=30°,
∴∠BOC=60°.
∵OB=OC,BC=6,
∴△OBC是等边三角形,
∴OB=BC=6.
∴⊙O的直径等于12.
故选:D.
【点睛】
本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
8、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
9、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
10、D
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、
【分析】
设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
【详解】
解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:
∵△ABC绕着点C逆时针旋转60°,
∴∠ACM=60°,CA=CM,
∴△ACM是等边三角形,
∴CM=AM①,∠ACM=∠MAC=60°,
∵∠B=90°,AB=BC=1,
∴∠BCA=∠CAB=45°,AC==CM,
∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
∴∠ECM=∠MAF=75°②,
∵MF⊥BA,ME⊥BC,
∴∠E=∠F=90°③,
由①②③得△EMC≌△FMA,
∴ME=MF,
而MF⊥BA,ME⊥BC,
∴BM平分∠EBF,
∴∠CBD=45°,
∴∠CDB=180°-∠BCA-∠CBD=90°,
Rt△BCD中,BD=BC=,
Rt△CDM中,DM=CM =,
∴BM=BD+DM=,
故答案为:.
【点睛】
本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
2、-2
【分析】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
【详解】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
∵直线AB的解析式为
当x=0时,y=5,当y=0时,x=5
∴B(0,5),A(5,0)
∴AO=BO,△AOB是等腰直角三角形
∴∠BAO=90°
当CN⊥AB时,则△ACN是等腰直角三角形
∴CN=AN
∵C
∴AC=7
∵AC2=CN2+AN2=2CN2
∴CN=
当 C、M、N三点共线时,长度最小
即MN=CN-CM=-2
故答案为:-2.
【点睛】
此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
3、∠ABC
【分析】
根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.
【详解】
解:∵四边形ABCD内接于圆,
∴,
∵E为CD延长线上一点,
∴,
∴,
故答案为:.
【点睛】
题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.
4、65
【分析】
连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
【详解】
解:如图所示:连接OA,OC,OB,
∵PA、PB、DE与圆相切于点A、B、E,
∴,,,
∵,
∴,
∵,
∴DO平分,EO平分,
∴,,
∴,,
∴,
故答案为:65.
【点睛】
题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
5、①②④
【分析】
连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
【详解】
解:连接OM,
∵PE为的切线,
∴,
∵,
∴,
∴,
∵,,
∴,
即AM平分,故①正确;
∵AB为的直径,
∴,
∵,,
∴,
∴,
∴,故②正确;
∵,
∴,
∵,
∴,
∴的长为,故③错误;
∵,,,
∴,
∴,
∴,
∴,
又∵,,,
∴,
又∵,
∴,
设,则,
∴,
在中,,
∴,
∴,
由①可得,
,
故④正确,
故答案为:①②④.
【点睛】
本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题
1、
(1)45°
(2)
【分析】
(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;
(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.
(1)
连接.
∵ ,
∴ ,即 .
∵ ,
∴ .
∵ 是⊙的切线,
∴ ,即 .
∴ .
∴ .
∴ .
(2)
∵ ,,
∴ .
∵ ,
∴ .
∴ 的长.
【点睛】
本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.
2、
(1)见解析
(2)
【分析】
(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
(2)证明,得出对应边成比例,即可求出的长.
(1)
证明:连接,如图所示:
是的直径,
,
,
,
,
,
,
即,
是的切线;
(2)
解:的半径为,
,,
,
,
,
,
,
又,
,
,
即,
.
【点睛】
本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
3、
【分析】
连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.
【详解】
解:如图,连接OA.
∵OM:MC=3:2,OC=10,
∴OM==6.
∵OC⊥AB,
∴∠OMA=90°,AB=2AM.
在Rt△AOM中,AO=10,OM=6,
∴AM=8.
∴AB=2AM =16.
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
4、
(1);
(2),0≤x≤1;
(3)AE的值为或.
【分析】
(1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
(2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
(3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
(1)
解:过点E作EH⊥BD与H,
∵正方形的边长为1,,
∴EB=1-,
∵BD为正方形对角线,
∴BD平分∠ABC,
∴∠ABD=45°,
∵EH⊥BD,
∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
∴EH=BH,
∴EH=BH=BEsin45=,AB=BDcos45°,
∴,
∴DH=DB-BH=,
;
(2)
解:如上图,∵AE=x,
∴BE=1-x,
∵将△ADE绕点D针旋转90°,得到△DCF,
∴CF=AE=x,ED=FD=,
∴BF=BC+CF=1+x,
在Rt△EBF中EF=,
∵∠EDF=90°,ED=FD,
∴△DEF为等腰直角三角形,
∴∠DFE=∠DEF=45°,
∴∠EBM=∠MFD=45°,
∵∠EMB=∠DMF,
∴△BEM∽△FDM,
∴,即,
∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
∴△EMD∽△BMF,
∴,即,
∴,
∴,
∴即,
∴,0≤x≤1;
(3)
解:当点G在BC上,,
∵四边形ABCD为正方形,
∴AD∥BG,
∴∠DAM=∠BGM,∠ADM=∠GBM,
∴△BGM∽△DAM,
∴,
∵由(2)知△BEM∽△FDM,
∴,
∵DB=,
∴,
∴,
∴,
∵,
∴即,
解,舍去;
当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
∵GB∥AD,
∴∴∠DAM=∠BGM,∠ADM=∠GBM,
∴△BGM∽△DAM,
∴,
∴,
∴,
∵∠LBM=∠CBD=45°,ML⊥BC,
∴△MLB为等腰直角三角形,
∵ML∥CD,
∴∠LMB=∠CDB,∠L=∠DCB,
∴△MLB∽△DCB,
∴,CD=1,
∴ML=
∵ML∥BE,
∴∠L=∠FBE,∠LMF=∠BEF,
∴△LMF∽△BEF,
∴,
∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
∴,
整理得:,
解得,舍去,
∴AE的值为或.
【点睛】
本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
5、2+
【分析】
连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
【详解】
解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.
∵∠AOB=90°,
∴AB是直径,
∵A(-4,0),B(0,2),
∴,
∵∠AMC=2∠AOC=120°,
,
在Rt△COH中,,
,
在Rt△ACH中,AC2=AH2+CH2,
∴,
∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
∴OC=2+,
故答案为:2+.
【点睛】
本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。
这是一份沪科版九年级下册第24章 圆综合与测试习题,共27页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共37页。试卷主要包含了如图,是的直径,,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。