年终活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题练习练习题(无超纲)

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题练习练习题(无超纲)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题练习练习题(无超纲)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆专题练习练习题(无超纲)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共32页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、计算半径为1,圆心角为的扇形面积为( )
    A. B. C. D.
    2、如图,AB 为⊙O 的直径,弦 CD^AB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为( )

    A.3 B.2 C.1 D.
    3、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )

    A. B. C. D.
    4、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    5、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )

    A.30° B.60°
    C.90° D.120°
    6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )
    A. B. C. D.
    7、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    8、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )

    A.25° B.80° C.130° D.100°
    9、下列各点中,关于原点对称的两个点是(  )
    A.(﹣5,0)与(0,5) B.(0,2)与(2,0)
    C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)
    10、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.

    2、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.

    3、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .

    4、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.

    5、如图AB为⊙O的直径,点P为AB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是______(写所有正确论的号)
    ①AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知为的直径,切于点C,交的延长线于点D,且.

    (1)求的大小;
    (2)若,求的长.
    2、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.

    (1)求证:PB是⊙O的切线;
    (2)连接OP,若OP∥BC,且OP=8,⊙O的半径为3,求BC的长.
    3、如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.

    4、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.
    5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则__.


    -参考答案-
    一、单选题
    1、B
    【分析】
    直接根据扇形的面积公式计算即可.
    【详解】

    故选:B.
    【点睛】
    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.
    2、B
    【分析】
    连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.
    【详解】
    解:连接OC,如图

    ∵AB 为⊙O 的直径,CD^AB,垂足为点 E,CD=8,
    ∴,
    ∵,
    ∴,
    ∴;
    故选:B.
    【点睛】
    本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出.
    3、A
    【分析】
    连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
    【详解】
    解:连结OC,
    ∵以边上一点为圆心作,恰与边,分别相切于点A, ,
    ∴DC=AC,OC平分∠ACD,
    ∵,,
    ∴∠ACD=90°-∠B=60°,
    ∴∠OCD=∠OCA==30°,
    在Rt△ABC中,AC=ABtanB=3×,
    在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
    ∴OD=OA=1,DC=AC=,
    ∴,,
    ∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
    ∴,
    S阴影=.
    故选择A.

    【点睛】
    本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
    4、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    5、B
    【分析】
    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
    【详解】
    解:因为每次旋转相同角度,旋转了六次,
    且旋转了六次刚好旋转了一周为360°,
    所以每次旋转相同角度 .
    故选:B.
    【点睛】
    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
    6、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C、是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、不是轴对称图形,是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、D
    【分析】
    连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.
    【详解】
    解:连接OB,OC,

    ∵∠BAC=30°,
    ∴∠BOC=60°.
    ∵OB=OC,BC=6,
    ∴△OBC是等边三角形,
    ∴OB=BC=6.
    ∴⊙O的直径等于12.
    故选:D.
    【点睛】
    本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
    8、D
    【分析】
    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠B+∠ADC=180°,
    ∵∠ADC=130°,
    ∴∠B=50°,
    由圆周角定理得,∠AOC=2∠B=100°,
    故选:D.
    【点睛】
    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    9、D
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
    故选:D.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    10、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、
    【分析】
    设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
    【详解】
    解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:

    ∵△ABC绕着点C逆时针旋转60°,
    ∴∠ACM=60°,CA=CM,
    ∴△ACM是等边三角形,
    ∴CM=AM①,∠ACM=∠MAC=60°,
    ∵∠B=90°,AB=BC=1,
    ∴∠BCA=∠CAB=45°,AC==CM,
    ∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
    ∴∠ECM=∠MAF=75°②,
    ∵MF⊥BA,ME⊥BC,
    ∴∠E=∠F=90°③,
    由①②③得△EMC≌△FMA,
    ∴ME=MF,
    而MF⊥BA,ME⊥BC,
    ∴BM平分∠EBF,
    ∴∠CBD=45°,
    ∴∠CDB=180°-∠BCA-∠CBD=90°,
    Rt△BCD中,BD=BC=,
    Rt△CDM中,DM=CM =,
    ∴BM=BD+DM=,
    故答案为:.
    【点睛】
    本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
    2、-2
    【分析】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
    【详解】
    由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
    ∵直线AB的解析式为
    当x=0时,y=5,当y=0时,x=5
    ∴B(0,5),A(5,0)
    ∴AO=BO,△AOB是等腰直角三角形
    ∴∠BAO=90°
    当CN⊥AB时,则△ACN是等腰直角三角形
    ∴CN=AN
    ∵C
    ∴AC=7
    ∵AC2=CN2+AN2=2CN2
    ∴CN=
    当 C、M、N三点共线时,长度最小
    即MN=CN-CM=-2
    故答案为:-2.

    【点睛】
    此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
    3、∠ABC
    【分析】
    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.
    【详解】
    解:∵四边形ABCD内接于圆,
    ∴,
    ∵E为CD延长线上一点,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.
    4、65
    【分析】
    连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.
    【详解】
    解:如图所示:连接OA,OC,OB,

    ∵PA、PB、DE与圆相切于点A、B、E,
    ∴,,,
    ∵,
    ∴,
    ∵,
    ∴DO平分,EO平分,
    ∴,,
    ∴,,
    ∴,
    故答案为:65.
    【点睛】
    题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
    5、①②④
    【分析】
    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,,,可得,继而可得,,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.
    【详解】
    解:连接OM,

    ∵PE为的切线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    即AM平分,故①正确;
    ∵AB为的直径,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,故②正确;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴的长为,故③错误;
    ∵,,,
    ∴,
    ∴,
    ∴,
    ∴,
    又∵,,,
    ∴,
    又∵,
    ∴,
    设,则,
    ∴,
    在中,,
    ∴,
    ∴,
    由①可得,

    故④正确,
    故答案为:①②④.
    【点睛】
    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    三、解答题
    1、
    (1)45°
    (2)
    【分析】
    (1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;
    (2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.
    (1)
    连接.

    ∵ ,
    ∴ ,即 .
    ∵ ,
    ∴ .
    ∵ 是⊙的切线,
    ∴ ,即 .
    ∴ .
    ∴ .
    ∴ .
    (2)
    ∵ ,,
    ∴ .
    ∵ ,
    ∴ .
    ∴ 的长.
    【点睛】
    本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.
    2、
    (1)见解析
    (2)
    【分析】
    (1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;
    (2)证明,得出对应边成比例,即可求出的长.
    (1)
    证明:连接,如图所示:

    是的直径,






    即,
    是的切线;
    (2)
    解:的半径为,
    ,,





    又,


    即,

    【点睛】
    本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.
    3、
    【分析】
    连接OA,根据⊙O的半径为10,OM:MC=3:2可求出OM的长,由勾股定理求出AM的长,再由垂径定理求出AB的长即可.
    【详解】
    解:如图,连接OA.

    ∵OM:MC=3:2,OC=10,
    ∴OM==6.
    ∵OC⊥AB,
    ∴∠OMA=90°,AB=2AM.
    在Rt△AOM中,AO=10,OM=6,
    ∴AM=8.
    ∴AB=2AM =16.
    【点睛】
    本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
    4、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.
    5、2+
    【分析】
    连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
    【详解】
    解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.

    ∵∠AOB=90°,
    ∴AB是直径,
    ∵A(-4,0),B(0,2),
    ∴,
    ∵∠AMC=2∠AOC=120°,

    在Rt△COH中,,

    在Rt△ACH中,AC2=AH2+CH2,
    ∴,
    ∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
    ∴OC=2+,
    故答案为:2+.
    【点睛】
    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共36页。

    沪科版九年级下册第24章 圆综合与测试习题:

    这是一份沪科版九年级下册第24章 圆综合与测试习题,共27页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试课后作业题:

    这是一份沪科版九年级下册第24章 圆综合与测试课后作业题,共37页。试卷主要包含了如图,是的直径,,点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map