沪科版九年级下册第25章 投影与视图综合与测试当堂检测题
展开沪科版九年级数学下册第25章投影与视图定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=( )
A.10 B.11 C.12 D.13
2、如图为某几何体的三视图,则该几何体是( )
A.圆锥 B.圆柱 C.三棱柱 D.四棱柱
3、如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
4、如图,身高1.5米的小明(AB)在太阳光下的影子AG长1.8米,此时,立柱CD的影子一部分是落在地面的CE,一部分是落在墙EF上的EH.若量得米,米,则立柱CD的高为( ).
A.2.5m B.2.7m C.3m D.3.6m
5、如图,几何体的左视图是( )
A. B. C. D.
6、下列几何体中,俯视图为三角形的是( )
A. B. C. D.
7、如图所示的几何体,它的左视图是( )
A. B. C. D.
8、如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的俯视图为( )
A. B.
C. D.
9、如图摆放的下列几何体中,左视图是圆的是( )
A. B. C. D.
10、下面的三视图所对应的几何体是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为_____.
2、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.
3、用一些完全相同的正方体木块搭几何体,从其正面和上面看到的形状图如图所示,则搭成这个几何体所用正方体木块的个数最少为__________.
4、一空间几何体的三视图如图所示,则这个几何体的表面积是________.
5、圆锥的母线长为5,侧面展开图的面积为20π,则圆锥主视图的面积为_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.
(1)请画出这个几何体的三视图;
(2)该几何体的表面积(含下底面)为 ;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体.
2、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图.
3、如图1,是一个长方体截成的几何体,请在网格中依次画出这个几何体的三视图.
4、马路边上有一棵树AB,树底A距离护路坡CD的底端D有3米,斜坡CD的坡角为60度,小明发现,下午2点时太阳光下该树的影子恰好为AD,同时刻1米长的竹竿影长为0.5米,下午4点时又发现该树的部分影子落在斜坡CD上的DE处,且,如图所示.
(1)树AB的高度是________米;
(2)求DE的长.
5、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.
(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);
(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.
-参考答案-
一、单选题
1、B
【分析】
根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.
【详解】
解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,
∴m=4+3+2=9,n=4+2+1=7,
∴2m﹣n=2×9﹣7=11.
故选B.
【点睛】
本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.
2、C
【分析】
根据三视图判断该几何体即可.
【详解】
解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.
故选:C.
【点睛】
本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.
3、B
【分析】
根据左视图是从左面看得到的图形,可得答案.
【详解】
解:从左边看,上面一层是一个正方形,下面一层是两个正方形,
故选B
【点睛】
本题考查了简单组合体的三视图,从左面看得到的图形是左视图,掌握三视图的有关定义是解题的关键.
4、A
【分析】
将太阳光视为平行光源,可得,MD=HE,即可得CM的值,故计算CD=CM+DM即可.
【详解】
如图所示,过D点作BG平行线交FE于点H,过E点作BG平行线交CD于点M
∵BG//ME//DH
∴∠BGA=∠MEC,∠BAG=∠DCE=90°
∴,MD=HE
∴
∴
∴CD=CM+DM=1+1.5=2.5
故答案选:A.
【点睛】
本题考查了相似三角形的判断即性质,由太阳光投影判断出平行关系进而求得相似是解题的关键.
5、D
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
根据左视图的定义可知,这个几何体的左视图是选项D,
故选:D.
【点睛】
本题考查简单组合体的三视图,解题的关键是理解三视图的定义.
6、D
【分析】
从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.
【详解】
从上方朝下看只有D选项为三角形.
故选:D.
【点睛】
本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.
7、D
【分析】
左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可.
【详解】
解:如图所示,几何体的左视图是:
故选:D.
【点睛】
本题考查简单组合体的三视图,正确掌握观察角度是解题关键.
8、C
【分析】
先根据主视图可得出观察这个立体图形的正面,再根据俯视图的定义(从上面观察物体所得到的图形叫做俯视图)即可得.
【详解】
解:由题意得:观察这个立体图形的正面如下:
则它的俯视图为
故选:C.
【点睛】
本题考查了三视图,掌握理解俯视图的定义是解题关键.
9、D
【分析】
根据这几种图形的左视图即可作出判断.
【详解】
A、长方体的左视图是长方形,故不符合题意;
B、圆柱体的左视图是长方形,故不符合题意;
C、圆锥体的左视图是三角形,故不符合题意;
D、球体的左视图是圆,故符合题意.
故选:D
【点睛】
本题考查了几何体的三视图,掌握常见几何体的三视图是关键.
10、C
【分析】
根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.
【详解】
解:根据三视图知,组成该几何体的小正方体分布情况如下:
与之相对应的C选项,
故选:C.
【点睛】
本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.
二、填空题
1、4
【分析】
据从上面看得到的图形是俯视图,直接观察,可得答案.
【详解】
解:从上面看,底层是两个小正方形,上层是两个小正方形,如图所示,
所以该几何体的俯视图的面积为4.
故答案为:4.
【点睛】
本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.
2、10 16
【分析】
综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.
【详解】
解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,
故这个几何体最少有10个小正方形,最多有16个,
故答案为:10,16.
【点睛】
本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.
3、7
【分析】
由主视图和左视图确定左视图的形状,再判断最少的正方体的个数即可.
【详解】
解:由题中所给出的主视图知物体共3列,且最高两层的有2列,一层的有一列;由俯视图知共5列,
所以小正方体的个数最少的几何体为:2+2+1+1+1=7个.
故答案为:7.
【点睛】
考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.
4、48π
【分析】
由题意推知几何体是圆柱,高为5cm,底面半径为3cm,根据圆柱的表面积公式可求可求其表面积.
【详解】
解:由题意推知几何体是圆柱,从主视图,左视图可知高为5cm,从俯视图可知底面半径为3cm,
圆柱的表面积是:2×32×π+2π×3×5=48π
故答案为:48π.
【点睛】
本题考查三视图、圆柱的表面积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.基础题.
5、12
【分析】
圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=πrl代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可.
【详解】
解:根据圆锥侧面积公式:S=πrl,圆锥的母线长为5,侧面展开图的面积为20π,
故20π=π×5×r,
解得:r=4.
由勾股定理可得圆锥的高
∴圆锥的主视图是一个底边为8,高为3的等腰三角形,
∴它的面积=,
故答案为:12.
【点睛】
本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.
三、解答题
1、(1)见解析;(2)28;(3)2
【分析】
(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;
(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;
(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.
【详解】
(1)如图所示:
(2)(4×2+6×2+4×2)×(1×1)
=(8+12+8)×1
=28
故答案为:28
(3)由分析可知,最多可以再添加2个小正方体,如图,
故答案为:2
【点睛】
此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
2、见解析
【分析】
根据图形及三视图的定义作图即可.
【详解】
解:三视图如下所示:
【点睛】
此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.
3、见解析
【分析】
根据三视图的定义,作出图形即可.
【详解】
解:三视图,如图所示.
【点睛】
本题考查作图﹣三视图,解题的关键是理解三视图的定义,属于中考常考题型.
4、(1)6;(2)(3−)米
【分析】
(1)根据在同一时刻物高和影长成正比,即可求出结果;
(2)延长BE交AD延长线于F点,根据30度角的直角三角形即可求出结果.
【详解】
解:(1)∵同时刻1米长的竹竿影长为0.5米,AD=3米,
∴树AB的高度是6米;
故答案为:6;
(2)如图,延长BE,交AD于点F,
∵AB=6,∠CDF=60°,BE⊥CD,
∴∠DFE=30°,
∴AF=6,
∴DF=6−3,
∴DE=DF= (6−3)=(3−)米.
【点睛】
本题考查了解直角三角形的应用以及平行投影.解决本题的关键是作出辅助线得到AB的影长.
5、(1)见解析;(2)路灯O与地面的距离为3m
【分析】
(1)由题意连接 并延长,两条线的交点就是灯光的位置;
(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.
【详解】
解:(1)如图,点即为为所求;
(2)作OF⊥MN交AB于E,如图,AB=m,EF=m,MN=2m,
∵,
∴△OAB∽△OMN,
∴AB:MN=OE:OF,
即,解得OF=3(m).
经检验:符合题意
答:路灯O与地面的距离为3m.
【点睛】
本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.
沪科版九年级下册第25章 投影与视图综合与测试同步测试题: 这是一份沪科版九年级下册第25章 投影与视图综合与测试同步测试题,共19页。试卷主要包含了下面的三视图所对应的几何体是,下列物体的左视图是圆的为,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
沪科版九年级下册第25章 投影与视图综合与测试课时练习: 这是一份沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。
沪科版九年级下册第25章 投影与视图综合与测试达标测试: 这是一份沪科版九年级下册第25章 投影与视图综合与测试达标测试,共20页。试卷主要包含了如图所示的几何体的俯视图是等内容,欢迎下载使用。