沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题
展开这是一份沪科版九年级下册第25章 投影与视图综合与测试当堂达标检测题,共20页。试卷主要包含了下面左侧几何体的主视图是等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示的几何体的俯视图是( )
A. B.
C. D.
2、如图,是空心圆柱体,其主视图是下列图中的( )
A. B. C. D.
3、如图所示的几何体的左视图是( )
A. B.
C. D.
4、下列几何体的主视图和俯视图完全相同的是( )
A. B. C. D.
5、下列几何体中,其三视图完全相同的是( )
A. B.
C. D.
6、如图所示,沿正方体相邻的三条棱的中点截掉一个角,则它的左视图是( )
A. B.
C. D.
7、水平放置的下列几何体,主视图不是矩形的是( )
A. B.
C. D.
8、下面左侧几何体的主视图是( )
A. B. C. D.
9、如图是由4个相同的正方体组成的立体图形,它的左视图是( )
A. B. C. D.
10、四个相同的小正方体组成的立体图形如图所示,它的主视图为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是给出的几何体三个方向看到的形状,则这个几何体最多由_____个小正方体组成.
2、找出与图中几何体对应的从三个方向看到的图形,并在横线上填上对应的序号.
—————— ——————
—————— ——————
3、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为___.
4、如图所给出的几何体的三视图,可以确定几何体中小正方体的数目为___.
5、一个几何体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个几何体的小正方体的个数为______个.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.
2、一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.
(1)在所给的方框中分别画出该儿何体从正面,从左面看到的形状图;
(2)若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从正面看到的形状图相同,则最多可拿掉 个立方块.
3、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.
4、一个几何体由大小相同的小立方块搭成,箭头所指的为正面,请画出从正面、左面、上面看到的几何体的形状图.
5、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.
-参考答案-
一、单选题
1、B
【分析】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【详解】
解:这个几何体的俯视图是 ,
故选:B.
【点睛】
本题考查了俯视图,熟记俯视图的定义(从物体的上面观察得到的视图)是解题关键.
2、C
【分析】
从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.
【详解】
主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.
本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.
故选:C
【点睛】
本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.
3、B
【分析】
根据左视图是从左面看到的图形判定则可.
【详解】
解:从左边看,是一个正方形,正方形的右上角有一条虚线.
故选:B.
【点睛】
本题主要考查了几何体的三种视图和学生的空间想象能力,正确掌握观察角度是解题关键.
4、D
【分析】
根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.
【详解】
解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;
B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;
C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;
D、圆的主视图和俯视图都为圆,故D选项符合题意;
故选D.
【点睛】
本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.
5、A
【分析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.
【详解】
解:A、球的三视图完全相同,都是圆,正确;
B、圆柱的俯视图与主视图和左视图不同,错误;
C、四棱锥的俯视图与主视图和左视图不同,错误;
D、圆锥的俯视图与主视图和左视图不同,错误;
故选A.
【点睛】
考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
6、C
【分析】
根据从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,由此求解即可
【详解】
解:由题意得:从左边看,首先看的见的部分是一个正方形,然后在右上角有截面的一条线看不见,要用虚线表示,
故选C.
【点睛】
本题主要考查了几何体的三视图,解题的关键在于能够熟练掌握三视图的定义.
7、C
【分析】
根据从正面看到的图形是主视图,观察图形的主视图是否为矩形,即可判断
【详解】
解:观察各图形,其中A,B,D的主视图是矩形,C选项的主视图是三角形
故C选项符合题题意,
故选C
【点睛】
本题考查了三视图,掌握从正面看到的图形是主视图是解题的关键.
8、A
【分析】
找出从几何体的正面看所得到的图形即可.
【详解】
解:从几何体的正面看,是一行两个并列的矩形.
故选:A.
【点睛】
本题主要考查了几何体的三视图,准确分析判断是解题的关键.
9、A
【分析】
从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出左视图图形即可.
【详解】
从左面看所得到的图形为A选项中的图形.
故选A
【点睛】
本题考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
10、A
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为:,
左视图为:,
俯视图为:,
故选:
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
二、填空题
1、10
【分析】
从俯视图可知第一层有5个小正方体,从正视图和左视图可知第二层最多有5个,据此即可求得答案
【详解】
由俯视图可知第一层有5个小正方体,
由已知的正视图和左视图可知,第2层最多有5个小正方体,
故该几何体最多有5+5=10个
故答案为:10
【点睛】
考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
2、③①④②
【分析】
在正面得到由前到后观察物体的视图叫主视图,在水平面得到由上到下观察物体的视图叫俯视图,在侧面得到由左到右观察物体的视图叫左视图,根据三视图的定义求解即可.
【详解】
根据三视图的定义可知:第一个三视图所对应的几何体为③;
第二个三视图所对应的几何体为①;
第三个三视图对应的几何体为④;
第四个三视图对应的几何体为②;
故答案为:③①④②.
【点睛】
本题考查三视图,熟知三视图的定义是解题的关键.
3、7
【分析】
易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层正方体的可能的最少个数,相加即可.
【详解】
解:由俯视图易得最底层有4个正方体,由主视图第二层最少有2个正方体,由主视图第三层最少有1个正方体,
那么最少有4+2+1=7个立方体.
故答案是:7.
【点睛】
本题考查了由三视图判断几何体.俯视图小正方形的个数即为最底层的小正方体的个数,主视图第二层和第三层小正方形的个数即为其余层数小正方体的最少个数.
4、9或10或11.
【分析】
从俯视图看出底层小正方体的位置,两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,从左视图可以确定第一排两层,第二排三层,分5种情况可取定小正方体的个数.
【详解】
解:从俯视图可以看出分简单组合体两排三列,第一排两列小正方形,第二排三列小正方形,右边对齐,
从主视图可以确定左边列第二排两层2个小正方体,中间列两排最多都3层,右边列两排最多两层,
从左视图可以确定第一排两层,第二排三层,
∴①简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是1+2+2+3+1=9个;
如图
②简单组合体可以是第一排中间列一层1个小正方体,右边列两层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是1+2+2+3+2=10个;
如图
∴③简单组合体可以是第一排中间列两层2个小正方体,右边列一层1个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+1+2+3+2=10个;
如图
∴④简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列一层1个小正方体,组合体小正方体的个数是2+2+2+3+1=10个;
如图
⑤简单组合体可以是第一排中间列两层2个小正方体,右边列两层层2个小正方形,第二排左边列2层2个小正方体,中间列3层3个小正方体,右边列两层2个小正方体,组合体小正方体的个数是2+2+2+3+2=11个;
如图
所以搭成这个几何体所用的小立方块的个数为9或10或11,
故答案为:9或10或11.
【点睛】
本题考查根据组合体的三视图确定小正方体的个数,掌握三视图的特征,结合图形分类讨论解决问题是解题关键.
5、5
【分析】
从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.
【详解】
解:由俯视图易得最底层小正方体的个数为3,由主视图可知第二层的右侧有2个正方体,从左视图可知只有一行二层,那么共有3+2=5个正方体.
故答案为:5.
【点睛】
本题考查了由三视图确定几何体的形状,同时考查学生空间想象能力及对立体图形的认识.
三、解答题
1、见解析.
【分析】
从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可.
【详解】
解:如图所示:
【点睛】
本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.
2、(1)见详解;(2)6
【分析】
(1)根据从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,画出主视图从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图即可;
(2)根据立体图形的遮挡主视图、俯视图不变在俯视图中得出拿去的小正方体的个数.
【详解】
解:(1)从正面看得到的图形是主视图,从正面看分左中右三列,左列有3个正方形,中间列有3个正方形,右边列有2个正方形,可画出主视图
从左边看到的图形是左视图,分三行前中后三行,从右边数前行有3个正方形,中行由3个正方形,后行1个正方形可画出左视图
该几何体从正面,从左面看到的图形如图所示:
(2)拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉6个左列前行2个正方形,中列中行2个正方形,中列后行1个小正方形,右列中行1个正方形,共6个正方形,如图
故答案为:6.
【点睛】
本题考查简单几何体的三视图,正确想象出几何体的形状是解题关键,画三视图时注意“长对正,宽相等,高平齐”.
3、见解析
【分析】
主视图有3列,每列小正方形数目分别为,,;左视图有2列,每列小正方形数目分别为,;俯视图有3列,每行小正方形数目分别为,,.
【详解】
解:如图所示:
【点睛】
此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.
4、见解析
【分析】
从正面看:共有3列,从左往右分别有3,1,1个小正方形;从左面看:共有3列,从左往右分别有1,3,1个小正方形;从上面看:共分3列,从左往右分别有3,1,2个小正方形.据此可画出图形.
【详解】
解:如图所示:
【点睛】
本题考查的是画简单组合体的三视图,用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形,理解三视图的含义是作图的关键.
5、图见解析.
【分析】
根据左视图和俯视图的画法即可得.
【详解】
解:画图如下:
【点睛】
本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.
相关试卷
这是一份沪科版九年级下册第25章 投影与视图综合与测试课时练习,共19页。
这是一份初中第25章 投影与视图综合与测试练习,共18页。试卷主要包含了图中几何体的左视图是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试综合训练题,共16页。试卷主要包含了分别从正面,如图所示的几何体的左视图是等内容,欢迎下载使用。