模拟测评:2022年江西省九江市中考数学模拟真题测评 A卷(含答案解析)
展开2022年江西省九江市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则代数式的值是( )
A.﹣3 B.3 C.9 D.18
2、若二次函数的图象经过点,则a的值为( )
A.-2 B.2 C.-1 D.1
3、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
4、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A. B. C. D.
5、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )
A.672 B.673 C.674 D.675
6、下列方程中,关于x的一元二次方程的是( )
A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0
7、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数 | 100 | 300 | 800 | 1000 | 2000 | 3000 |
发芽粒数 | 96 | 287 | 770 | 958 | 1923 | a |
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
8、若,则下列分式化简正确的是( )
A. B. C. D.
9、若实数m使关于x的不等式组有解且至多有3个整数解,且使关于y的分式方程1的解满足﹣3≤y≤4,则满足条件的所有整数m的和为( )
A.17 B.20 C.22 D.25
10、下列关于x的方程中一定有实数根的是( )
A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知:的平分线与的垂直平分线相交于点,,,垂足分别为、,,,则________.
2、已知x为不等式组的解,则的值为______.
3、-3.6的绝对值是______.
4、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
5、在平面直角坐标系中,点A坐标为,点B在x轴上,若是直角三角形,则OB的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、芳芳家有一种伸缩挂衣架(如图1),伸缩挂衣架中有3个菱形组成,每个菱形边长为10cm.伸缩挂衣架打开时,每个菱形的锐角度数为60°(如图2);伸缩挂衣架收拢时,每个菱形的锐角度数从60°缩小为10°(如图3).问:伸缩挂衣架从打开到收拢共缩短了多少cm?(结果精确到1cm,参考数据:,,,).
2、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
3、计算:
(1)
(2)
4、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.
(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;
(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:
①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;
②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.
5、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.
(1)甲同学选取A图片链接题目的概率是 ;
(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)
-参考答案-
一、单选题
1、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
2、C
【分析】
把(-2,-4)代入函数y=ax2中,即可求a.
【详解】
解:把(-2,-4)代入函数y=ax2,得
4a=-4,
解得a=-1.
故选:C.
【点睛】
本题考查了点与函数的关系,解题的关键是代入求值.
3、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
4、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
5、C
【分析】
根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.
【详解】
解:由图可知,
第1个图案中白色纸片的个数为:1+1×3=4,
第2个图案中白色纸片的个数为:1+2×3=7,
第3个图案中白色纸片的个数为:1+3×3=10,
…
第n个图案中白色纸片的个数为:1+3n,
由题意得,1+3n =2023
解得n=674
故选:C.
【点睛】
本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.
6、A
【分析】
只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.
【详解】
解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;
B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;
C、为分式方程,不符合题意;
D、含有两个未知数,不是一元二次方程,不符合题意
故选:A.
【点睛】
本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.
7、C
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
8、C
【分析】
由,令,再逐一通过计算判断各选项,从而可得答案.
【详解】
解:当,时,
,,故A不符合题意;
,故B不符合题意;
而 故C符合题意;
.故D不符合题意
故选:C.
【点睛】
本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.
9、B
【分析】
根据不等式组求出m的范围,然后再根据分式方程求出m的范围,从而确定的m的可能值.
【详解】
解:由不等式组可知:x≤5且x≥,
∵有解且至多有3个整数解,
∴2<≤5,
∴2<m≤8,
由分式方程可知:y=m-3,
将y=m-3代入y-2≠0,
∴m≠5,
∵-3≤y≤4,
∴-3≤m-3≤4,
∵m是整数,
∴0≤m≤7,
综上,2<m≤7,
∴所有满足条件的整数m有:3、4、6、7,共4个,
和为:3+4+6+7=20.
故选:B.
【点睛】
本题考查了学生的计算能力以及推理能,解题的关键是根据不等式组以及分式方程求出m的范围,本题属于中等题型.
10、D
【分析】
分别求出方程的判别式,根据判别式的三种情况分析解答.
【详解】
解:A、∵x2=﹣x﹣1,
∴,
∵,
∴该方程没有实数根;
B、2x2﹣6x+9=0,
∵,
∴该方程没有实数根;
C、x2+mx+2=0,
∵,无法判断与0的大小关系,
∴无法判断方程根的情况;
D、x2﹣mx﹣2=0,
∵,
∴方程一定有实数根,
故选:D.
【点睛】
此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.
二、填空题
1、
【分析】
连接,,证明,,根据,即可求得
【详解】
解:连接,,
是的平分线,,,
,,,
在和中,
,
,
,
是的垂直平分线,
,
在和中,
,
,
,
,
,,
.
故答案为:.
【点睛】
本题考查了角平分线的性质,垂直平分线的性质,三角形全等的性质与判定,掌握以上性质定理是解题的关键.
2、2
【分析】
解不等式组得到x的范围,再根据绝对值的性质化简.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴
=
=
=2
故答案为:2.
【点睛】
本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.
3、3.6
【分析】
根据绝对值的性质解答.
【详解】
解:-3.6的绝对值是3.6,
故答案为:3.6.
【点睛】
此题考查了求一个数的绝对值,正确掌握绝对值的性质是解题的关键.
4、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
5、4或
【分析】
点B在x轴上,所以 ,分别讨论, 和两种情况,设 ,根据勾股定理求出x的值,即可得到OB的长.
【详解】
解:∵B在x轴上,
∴设 ,
∵ ,
∴ ,
①当时,B点横坐标与A点横坐标相同,
∴ ,
∴ ,
∴ ,
②当时, ,
∵点A坐标为,,
∴ ,
∴ ,
解得: ,
∴ ,
∴ ,
故答案为:4或.
【点睛】
本题考查平面直角坐标系中两点间距离以及勾股定理,分情况讨论是解题关键.
三、解答题
1、伸缩衣架从打开到收拢共缩短了25cm
【分析】
连接AC、BD,交于点O,然后根据菱形的性质及三角函数可求得BD的长,同理可求的长,进而问题可求解.
【详解】
解:连接AC、BD,交于点O,如图所示:
∵四边形ABCD是菱形,
∴,BO=OD,,
∵,
∴,
∴打开时:,
连接,,交于点,如图所示:
同理可得,
∴收拢时:
∴缩短了:
答:伸缩衣架从打开到收拢共缩短了25cm.
【点睛】
本题主要考查菱形的性质及解直角三角形,熟练掌握菱形的性质及解直角三角形是解题的关键.
2、
(1)①(6,4);②(3,-2)
(2)的值为
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为.
故答案为:.
②若点为点关于点的对称平移点,则点的坐标为.
故答案为:;
(2)
解:如图2中,当时,四边形是梯形,
,,,
,
或(舍弃),
当时,同法可得,
综上所述,的值为.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
3、
(1)2
(2)-2
【解析】
(1)
解:
=2-5+4+7-6
=2+4+7-5-6
=13-11
=2;
(2)
解:
=-2.
【点睛】
本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.
4、
(1)2,3
(2)①12个单位长度/秒;②2秒或秒
【分析】
(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;
(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;
②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.
(1)
解:设P、Q的速度分别为2x,3x,
由题意,得:6(2x+3x)=20-(-10),
解得:x=1,
故2x=2,3x=3,
故答案为:2,3;
(2)
解:①,.
答:点Q碰到挡板后的运动速度为12个单位长度/秒.
②当P、Q都向左运动时,
解得:.
当Q返回向右运动时,
解得:.
答:P、Q两点到原点距离相等时经历的时间为2秒或秒.
【点睛】
本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.
5、
(1)
(2)图表见解析,
【分析】
(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;
(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.
(1)
解:根据题意得:甲同学选取A图片链接题目的概率是;
(2)
解:根据题意,列表如下:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A,B),(B,A),
∴P(全班同学作答图片A和B所链接的题目).
【点睛】
本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键.
【真题汇总卷】2022年江西省抚州市中考数学模拟真题测评 A卷(含答案及解析): 这是一份【真题汇总卷】2022年江西省抚州市中考数学模拟真题测评 A卷(含答案及解析),共29页。试卷主要包含了在下列运算中,正确的是等内容,欢迎下载使用。
【真题汇总卷】2022年江西省九江市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【真题汇总卷】2022年江西省九江市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析),共27页。试卷主要包含了若,,且a,b同号,则的值为,正八边形每个内角度数为,下列利用等式的性质,错误的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析): 这是一份【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析),共25页。试卷主要包含了观察下列图形,下列各组图形中一定是相似形的是,下列计算中正确的是等内容,欢迎下载使用。