2021年安徽临泉县田家炳实验中学七年级上期末数学试卷
展开一、选择题(共10小题;共50分)
1. 8 的相反数是
A. 8B. 18C. −8D. −18
2. 全面放开二孩政策,我国总人口将适当增加,人口专家估算 2029 年到 2030 年人口出现最高峰值,将达到 14.5 亿.将 14.5 亿用科学记数法表示为
A. 1.45×108B. 14.5×108C. 1.45×109D. 14.5×109
3. 下列运算中,结果正确的是
A. 3x2y−2x2y=x2yB. 5y−3y=2
C. −3x+5x=−8xD. 3a+2b=5ab
4. 期末考试后,数学老师想制作一个统计图来了解一下本班数学考试各个分数段人数占班级总人数的百分比,最适合的统计图是
A. 条形统计图B. 扇形统计图C. 折线统计图D. 以上都可以
5. 如果 x=2 是方程 12x+a=−1 的根,那么 a 的值是
A. 0B. 2C. −2D. −6
6. 已知 −3xm−1y3 与 52xym+n 是同类项,那么 m,n 的值分别是
A. m=2,n=−1B. m=−2,n=−1
C. m=−2,n=1D. m=2,n=1
7. 互为相反数的两个数在数轴上对应的点之间距离为 a,则这两个数中较大的数为
A. aB. −aC. a2D. −a2
8. 如图,OC 平分平角 ∠AOB,∠AOD=∠BOE=20∘,图中互余的角共有
A. 1 对B. 2 对C. 3 对D. 4 对
9. 有一商店把某件商品按进价加 100% 作为定价,可是总卖不出去,为了保证不亏本,则商家应该在定价的基础上降价 售出.
A. 50%B. 80%C. 100%D. 120%
10. 已知线段 AB=10 cm,PA+PB=20 cm,则下列说法正确的是
A. 点 P 一定在线段 AB 的延长线上
B. 点 P 一定在线段 BA 的延长线上
C. 点 P 一定不在线段 AB 上
D. 点 P 一定不在直线 AB 外
二、填空题(共5小题;共25分)
11. 如图,在 △ABC 中,AB=AD=DC,∠BAD=20∘,则 ∠C= .
12. 植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是 .
13. 如果代数式 2x−y 的值为 6,那么代数式 4−2x+y 的值等于 .
14. 已知 ∠A 的度数为 30∘30ʹ30ʺ,则 ∠A 的补角的度数为 .
15. 一列单项式:−x2,3x3,−6x4,10x5,−15x6,⋯,按此规律,第 9 个单项式是 .
三、解答题(共8小题;共104分)
16. 计算:
(1)−23×3÷6−−32;
(2)12×12−13−14.
17. 解方程:
(1)2x−1=2−3x−1;
(2)1−1−x4=x+59.
18. 先化简,再求值:2x3+4x−x+3x2+2x3,其中 x=−1.
19. 如图,已知 OM 是 ∠AOC 的平分线,ON 是 ∠BOD 的平分线.
(1)如图 1,若 ∠AOB=90∘,∠COD=30∘,求 ∠MON 的度数;
(2)如图 2,若 ∠AOB=120∘,∠COD=20∘,直接写出 ∠MON 的度数;
(3)如图 3,若 ∠AOB=α∘,∠COD=β∘,直接写出 ∠MON 的度数.
20. 本学期体育老师刘老师对九年级某班 50 名学生进行了跳绳项目的测试,满分 5 分,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:
(1)本次测试的学生中,得 4 分的学生有多少名?
(2)求出表示“得 2 分”的部分的扇形的圆心角;
(3)通过一段时间的训练,刘老师对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为 3 分,且得 4 分的人数没变,原来得 2 分的人一半得了 3 分,一半得了 5 分,试通过计算补全第二次测试的扇形统计图.
21. 正在建设中合肥地铁 1 号线即将在 2016 年底实现运营.某人家住在A处,每天乘公交车前往B上班,由于交通拥堵,经常需要耗费很长时间,预计地铁开通后此人上班乘车时间将减少 30 分钟,已知从A处到B处,既有直达的公交车,也有地铁 1 号线的换乘站,且乘地铁从A到B的路程比乘公交车多 1 千米.若地铁 1 号线行驶的平均速度为 36 千米/时,公交车行驶的平均速度为 18 千米/时,求从A到B的乘公交车路程.
22. 如果一点在由两条有公共端点的线段组成的一条折线上且把这条折线分成长度相等的两部分,这点叫做这条折线的“折中点”.如果点 D 是折线 A−C−B 的“折中点”,请解答以下问题:
(1)已知 AC=m,BC=n.
当 m>n 时,点 D 在线段 上;
当 m=n 时,点 D 与 重合;
当 m
23. 若 a,b,c 为整数,且 a−b2016+c−a2016=1,试求 a−b2017+b−c2017+c−a2017 的值.
答案
第一部分
1. C【解析】8 的相反数为:−8.
2. C【解析】14.5 亿 =1450000000=1.45×109.
3. A【解析】A、系数相加字母及指数不变,故 A 正确;
B、系数相加字母及指数不变,故 B 错误;
C、系数相加字母及指数不变,故 C 错误;
D、不是同类项不能合并,故 D 错误.
4. B【解析】根据统计图的特点,知本班数学考试各个分数段人数占班级总人数的百分比,应选用扇形统计图.
5. C
【解析】∵x=2 是方程 12x+a=−1 的根,
∴ 代入得:12×2+a=−1,
∴a=−2.
6. D【解析】∵−3xm−1y3 与 52xym+n 是同类项,
∴m−1=1,m+n=3,
∴m=2,n=1.
7. C【解析】因为互为相反数的两个数在数轴上对应的点之间距离为 a,
所以这两个数中较大的数的 2 倍等于 a,
所以这两个数中较大的数为 a2.
8. D【解析】∵OC 平分平角 ∠AOB,
∴∠AOC=∠BOC=90∘,
∴∠AOD+∠COD=90∘,∠COE+∠BOE=90∘,
∵∠AOD=∠BOE=20∘,
∴∠COD=∠COE=70∘,
∴∠COD+∠BOE=90∘,∠COE+∠AOD=90∘,共 4 对互余的角.
9. A【解析】设商家应该在定价的基础上降价 x%,
根据题意得:1+100%1−x%=1,
解得:x=50,
则商家应该在定价的基础上降价 50%.
10. C
【解析】∵ 线段 AB=10 cm,PA+PB=20 cm,
∴PA+PB>AB,
∴ 点 P 一定不在线段 AB 上.
第二部分
11. 40∘
【解析】∵AB=AD,∠BAD=20∘,
∴∠B=12180∘−∠BAD=12180∘−20∘=80∘.
∵∠ADC 是 △ABD 的外角,
∴∠ADC=∠B+∠BAD=80∘+20∘=100∘.
∵AD=DC.
∴∠C=12180∘−∠ADC=12180∘−100∘=40∘.
12. 两点确定一条直线
【解析】植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线.
13. −2
【解析】当 2x−y=6 时,4−2x+y=4−2x−y=4−6=−2.
14. 149∘29ʹ30ʺ
【解析】180∘−30∘30ʹ30ʺ=149∘29ʹ30ʺ.
15. −45x10
【解析】∵ 一列单项式:−x2,3x3,−6x4,10x5,−15x6,⋯,
∴ 第 n 个单项式是 −1n⋅1+2+⋯+nxn+1,
化简,得第 n 个单项式是:−1n⋅nn+12xn+1,
∴ 第 9 个单项式是:−19⋅9×102⋅x10=−45x10.
第三部分
16. (1) 原式=−23×3×16+9=−13+9=823.
(2) 原式=6−4−3=6−7=−1.
17. (1) 去括号得,
2x−2=2−3x+3.
移项得,
2x+3x=2+3+2.
合并同类项得,
5x=7.
把 x 的系数化为 1 得,
x=75.
(2) 去分母得,
36−91−x=4x+5.
去括号得,
36−9+9x=4x+20.
移项得,
9x−4x=20−36+9.
合并同类项得,
5x=−7.
把 x 的系数化为 1 得,
x=−75.
18. 原式=2x3+4x−x−3x2−2x3=3x−3x2.
当 x=−1 时,
原式=−3−3=−6.
19. (1) ∵ OM 是 ∠AOC 的平分线,
∴ ∠COM=12∠AOC.
∵ ON 是 ∠BOD 的平分线,
∴ ∠DON=12∠BOD,
∴∠MON=∠COM+∠COD+∠DON=12∠AOC+∠COD+12∠BOD=12∠AOC+∠BOD+∠COD=12∠AOB−∠COD+∠COD=12∠AOB−12∠COD+∠COD=12∠AOB+12∠COD=12∠AOB+∠COD,
∵ ∠AOB=90∘,∠COD=30∘,
∴ ∠MON=12∠AOB+∠COD=12×90∘+30∘=60∘.
(2) 70∘.
【解析】∵ ∠AOB=120∘,∠COD=20∘,
∴ ∠MON=12∠AOB+∠COD=12120∘+20∘=70∘.
(3) 12α∘+β∘.
【解析】∵ ∠AOB=α∘,∠COD=β∘,
∴ ∠MON=12∠AOB+∠COD=12α∘+β∘.
20. (1) 根据题意得:得 4 分的学生有 50×50%=25(名),
答:得 4 分的学生有 25 名.
(2) “得 2 分”所在扇形的圆心角的度数是 360∘×1050=72∘.
(3) 由题意可得,得 4 分的人数为 25 名,占 50%,所在扇形圆心角的度数是 180∘;
得 3 分的人数为 5+5=10(名),占 1050=20%,所在扇形圆心角的度数是 360∘×20%=72∘;
得 5 分的人数为 10+5=15(名),占 1550=30%,所在扇形圆心角的度数是 360∘×30%=108∘.
第二次测试的扇形统计图补充如图:
21. 设从A到B的乘公交车路程是 x 千米,根据题意可得:
x+136+12=x18.
解得:
x=19.
答:从A到B的乘公交车路程为 19 千米.
22. (1) AC;C;BC
【解析】已知 AC=m,BC=n.
当 m>n 时,点 D 在线段 AC 上;
当 m=n 时,点 D 与 C 重合;
当 m
∵E 为线段 AC 中点,EC=4,
∴AC=2CE=8,
∵CD=3,
∴AD=AC−CD=5,
∵BD=AD=5,
∴BC=5−3=2;
点 D 在线段 BC 上时,
∵E 为线段 AC 中点,EC=4,
∴AC=2CE=8,
∵CD=3,
∴AC+CD=11,
∵BD=AD=11,
∴BC=11+3=14.
23. ∵a,b,c 为整数,且 a−b2016+c−a2016=1,
∴a=b 且 c−a=±1 或 c=a 且 a−b=±1.
① 当 a=b,c−a=1 时,a−b=0,b−c=−1,c−a=1,
∴ a−b2017+b−c2017+c−a2017=0+−1+1=0;
② 当 a=b,c−a=−1 时,a−b=0,b−c=1,c−a=−1,
∴ a−b2017+b−c2017+c−a2017=0+1+−1=0;
③ 当 c=a,a−b=1 时,a−b=1,b−c=−1,c−a=0,
∴ a−b2017+b−c2017+c−a2017=1+−1+0=0;
④ 当 c=a,a−b=−1 时,a−b=−1,b−c=1,c−a=0,
∴ a−b2017+b−c2017+c−a2017=−1+1+0=0.
综上所述,代数式 a−b2017+b−c2017+c−a2017 的值为 0.
江苏省扬州市田家炳实验中学2023-2024学年数学九上期末达标测试试题含答案: 这是一份江苏省扬州市田家炳实验中学2023-2024学年数学九上期末达标测试试题含答案,共7页。试卷主要包含了答题时请按要求用笔,两个相似三角形的面积比是9等内容,欢迎下载使用。
山东省日照市田家炳实验中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份山东省日照市田家炳实验中学2023-2024学年数学九上期末经典模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,要使有意义,则x的取值范围为,对于二次函数,下列说法正确的是等内容,欢迎下载使用。
安徽省阜阳临泉县联考2023-2024学年数学九上期末检测模拟试题含答案: 这是一份安徽省阜阳临泉县联考2023-2024学年数学九上期末检测模拟试题含答案,共7页。试卷主要包含了的倒数是,对于二次函数,下列说法正确的是,下列计算错误的是,下列说法正确的是等内容,欢迎下载使用。