四川省资阳市2021-2022学年高一上学期期末考试数学试题含答案
展开
资阳市2021—2022学年度高中一年级第一学期期末质量检测
数 学
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码贴在答题卡上对应的虚线框内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合,则
A. B.
C. D.
2. 函数的定义域为
A. B.
C. D.
3. 已知,则
A.3 B.5
C.7 D.15
4. 已知角的顶点与坐标原点重合,始边与轴的非负半轴重合.若点在角α终边上,则
A. B.0
C. D.
5. 函数的零点所在的区间为
A. B.
C. D.
6. 下列函数中为奇函数且在单调递增的是
A. B.
C. D.
7. 为了得到函数的图象,可将函数图象上的所有点
A.向右平移个单位 B.向左平移个单位
C.向右平移个单位 D.向左平移个单位
8. 已知函数为偶函数,则
A. B.
C. D.
9. 设,,,则a,b,c大小关系为
A. B.
C. D.
10.某企业注重科技创新,逐年加大研发资金投入.现分析了过去10年来的研发资金投入情况,已知2010年投入研发资金80万元,2020年投入研发资金320万元,且每年投入研发资金的增长率相同,则该企业在2022年投入的研发资金约为
(参考数据:,)
A.346.4万元 B.368万元
C.400万元 D.423.2万元
11.已知函数是定义在R上的奇函数,且在单调递增,又,则不等式的解集为
A. B.
C. D.
12.已知函数 若函数(其中)有6个不同的零点,则实数的取值范围是
A. B.
C. D.
二、填空题:本大题共4小题,每小题5分,共20分。
13.求值:________.
14.给出两个条件:①,;②在上单调递增.请写出一个同时满足以上两个条件的一个函数________.(写出满足条件的一个函数即可)
15.已知集合,.若,则实数的取值范围是________.
16.已知函数().给出以下结论:
①若,则函数的最小正周期为;
②若,则函数在区间上单调递增;
③若,函数的图象的对称轴方程为;
④若,,,则的最大值为;
其中,所有正确结论的序号是________.
三、解答题:本大题共70分。解答应写出文字说明、证明过程或演算步骤。
17. (10分)
已知全集,集合,.
(1)若,求;
(2)若,求实数的取值范围.
18. (12分)
已知,.
(1)求;
(2)求值的值.
19. (12分)
已知(其中且).
(1)若,,求实数的取值范围;
(2)若,的最大值大于1,求的取值范围.
20. (12分)
已知函数的图象关于点对称.
(1)当时,求函数的值域;
(2)若将图象上各点的纵坐标保持不变,横坐标变为原来的倍(其中),所得图象的解析式为.若函数在有两个零点,求的取值范围.
21. (12分)
已知函数是定义在R上的奇函数,当时,.
(1)求函数的解析式;
(2)判断函数在R上的单调性,并用调性定义进行证明;
(3)令函数.若对任意,,求m的取值范围.
22. (12分)
定义在D上的函数,若对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界.已知函数().
(1)若是奇函数,判断函数()是否为有界函数,并说明理由;
(2)若函数在上是以为上界的函数,求实数m的取值范围.
资阳市2021—2022学年度高中一年级第一学期期末质量检测
数学参考答案及评分意见
评分说明:
1.本解答给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则。
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
4.只给整数分。选择题和填空题不给中间分。
一、选择题:本大题共12小题,每小题5分,共60分。
1-5:BACDB;6-10:CDCAD;11-12:CD
二、填空题:本题共4小题,每小题5分,共20分。
13.2;
14. ,等(写出满足条件的一个函数即可);
15.;(注:未写成区间或集合不扣分)
16.①②④.
三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
17. (10分)
(1)时,,···················································2分
则.·························································5分
(2)方法1:若,
则···························································8分
解得,故的取值范围是.·········································10分
方法2:若,
则或,解得或,················································8分
所以时,的取值范围是,
即的取值范围是.···············································10分
注:第2小题结果未写成区间或集合不扣分
18. (12分)
(1)方法1:由,可知,·········································2分
由,得,
所以,则,····················································4分
所以.·······················································6分
方法2:由已知得,可知,········································2分
于是有,,····················································4分
所以.·······················································6分
(2)
,···························································10分
.···························································12分
19. (12分)
(1)时,,
即有,·······················································2分
所以解得,
故实数的取值范围是.···········································6分
(2)因为,则时,.
当时,则函数最大值,解得.······································8分
当时,则函数最大值,解得.······································10分
综上所述,的取值范围是.········································12分
注:结果未写成区间或集合不扣分
20. (12分)
(1)由题,,
所以,即有,··················································2分
又,则.······················································3分
所以,
当时,,则,
所以,函数的值域为.···········································6分
(2)由题可得,,··············································8分
令,得,.
即有,.······················································9分
当时,的零点依次为,,,…,····································10分
因为函数在有两个零点,所以
解得,即的取值范围是.·········································12分
注:第(2)小题结果未写成区间或集合不扣分
21. (12分)
(1)由于是定义在R上的奇函数,则,······························2分
当时,,
则.
所以的解析式为.···············································4分
(2)函数在R上的单调递增,·····································5分
证明如下:
任取,且
则
,
由,知,
则,
所以,函数在R上的单调递增.·····································8分
(3)由(2)知,函数在R上的单调递增,
则在时最小值.
又知函数在上单调递增,
则g(x)在上的最大值g(x)max=g(2).··································10分
因为任意,,
所以有f(x)min >g(x)max,则,所以.
故m的取值范围是.·············································12分
注:第(3)小题结果未写成区间或集合不扣分
22. (12分)
(1)若是奇函数,则,
则,
所以恒成立,
则是奇函数时,.···············································2分
此时,
由知,则,于是,则,
故时,,······················································4分
所以,函数()为有界函数.······································5分
(2)若函数在上是以为上界的函数,则有在上恒成立.
则恒成立,即恒成立,···········································6分
所以 即
即不等式组在上恒成立. ·········································8分
因为在上单调递减,其最大值为;··································9分
又在上也单调递减,其最小值为.··································10分
所以 即,
故实数m的取值范围是.··········································12分
注:第(2)小题结果未写成区间或集合不扣分
四川省资阳市安岳中学2023-2024学年高一上学期期中数学试题(Word版附解析): 这是一份四川省资阳市安岳中学2023-2024学年高一上学期期中数学试题(Word版附解析),共16页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
四川省资阳市雁江区资阳中学2023-2024学年高一上学期期中数学试题(Word版附解析): 这是一份四川省资阳市雁江区资阳中学2023-2024学年高一上学期期中数学试题(Word版附解析),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
四川省资阳市乐至中学2023-2024学年高一上学期10月月考数学试题: 这是一份四川省资阳市乐至中学2023-2024学年高一上学期10月月考数学试题,共22页。试卷主要包含了 已知, 已知,则函数的解析式为,设,,若,则实数的值可以是等内容,欢迎下载使用。