- 专题4.13 余角和补角(基础篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版) 试卷 7 次下载
- 专题4.14 余角和补角(巩固篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版) 试卷 6 次下载
- 专题4.16 线段单双中点模型(基础篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版) 试卷 8 次下载
- 专题4.17 线段双中点、多中点模型(培优篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版) 试卷 10 次下载
- 专题4.18 角平分线中角的计算(基础篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版) 试卷 8 次下载
专题4.15 余角和补角(培优篇)(专项练习)-2021-2022学年七年级数学上册基础知识专项讲练(人教版)
展开1.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=( )
A.120° B.130° C.60° D.150°
2.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )
A.∠BCD和∠ACFB.∠ACD和∠ACF
C.∠ACB和∠DCBD.∠BCF和∠ACF
3.一副三角板、,如图1放置,(=30°、45°),将三角板绕点逆时针旋转一定角度,如图2所示,且0°<<90°,则下列结论中正确的个数有( )
①的角度恒为105°;
②在旋转过程中,若平分,平分,的角度恒为定值;
③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;
④在图1的情况下,作,则平分
A.1个B.2个C.3个D.4个
二、填空题
4.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有_____.(填序号)
5.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______
6.如图,在平面内,点是直线上一点,,射线不动,射线,同时开始绕点顺时针转动,射线首次回到起始位置时两线同时停止转动,射线,的转动速度分别为每秒和每秒.若转动秒时,射线,,中的一条是另外两条组成角的角平分线,则______秒.
7.若一个角的余角是54°38′,则这个角是____________ ,这个角的补角是___________.
8.如果两个角的两条边分别垂直,而其中一个角比另一个角的4倍少60°,则这两个角的度数分别为________.
9.如图,某海域有三个小岛,在小岛处观测到小岛在它北偏东的方向上,观测到小岛在它南偏东的方向上,则的补角的度数是________.
10.如图,把放在量角器上,读得射线、分别经过刻度117和153,把绕点逆时针方向旋转到,下列三个结论:①;②若射线经过刻度27,则与互补;③若,则射线经过刻度45.其中正确的是__________________(填序号)
11.已知:如图1,点是直线上一点,过点作射线,使,过点作射线,使.如图2,绕点以每秒9°的速度顺时针旋转得,同时射线绕点以每秒3°的速度顺时针旋转得射线,当射线落在的反向延长线上时,射线和同时停止,在整个运动过程中,当______时,的某一边平分(指不大于180°的角).
三、解答题
12.如图,直线AB,CD相交于点O,OE平分,,
图中的余角是______把符合条件的角都填出来;
如果,那么根据______可得______度;
如果,求和的度数.
13.如图,∠AOB=120°,射线OC从OA开始,绕点O逆时针旋转,旋转的速度为每分钟20°;射线OD从OB开始,绕点O逆时针旋转,旋转的速度为每分钟5°,OC和OD同时旋转,设旋转的时间为t(0≤t≤15).
(1)当t为何值时,射线OC与OD重合;
(2)当t为何值时,∠COD=90°;
(3)试探索:在射线OC与OD旋转的过程中,是否存在某个时刻,使得射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值,若不存在,请说明理由.
14.已知,点为直线上一点,,是的平分线.
(1)如图1,若,求的度数;
(2)如图2,是的平分线,求的度数;
(3)如图3,在(2)的条件下,是的一条三等分线,,若,请直接写出的度数.(不用写过程)
15.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON内部作射线OC.
(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;
(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;
(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.
16.点O在直线AB上,射线OC上的点C在直线AB上,.
(1)如图1,求∠AOC的度数;
(2)如图2,点D在直线AB上方,∠AOD与∠BOC互余,OE平分∠COD,求∠BOE的度数;
(3)在(2)的条件下,点F,G在直线AB下方,OG平分∠FOB,若∠FOD与∠BOG互补,求∠EOF的度数.
17.如图1,点O在直线AB上,∠AOC=30°,将一直角三角板的直角边OM与OA重合,ON在∠COB内部.现将三角板绕O沿顺时针方向以每秒2°的速度旋转,当ON与OB重合时停止转动.设运动时间为t(s).
(1)若直角边ON将∠COB分成∠CON:∠BON=3:2,求t的值;
(2)如图2,OG为三角板MON内部的射线,在旋转的过程中,OG始终平分∠MOB,请问∠AOM与∠NOG是否存在一定的数量关系?若存在,求出改数量关系;若不存在,请说明理由.
18.已知,点B为平面内一点,于B.
(1)如图1,直接写出和之间的数量关系________;
(2)如图2,过点B作于点D,请说明的理由;
(3)如图3,在(2)问的条件下,点E、F在上,连接,、,平分,平分,若,,求的度数.
19.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,求∠NEM的度数,并直接写出∠B′ME互余的角.
20.如图,已知与互为余角,且平分平分.
(1)求的度数;
(2)如果已知,其他条件不变,则_______度;如果已知,其他条件不变,则_______度;
(3)从以上求的过程中,你得出的结论是__________.
参考答案
1.D
【解析根据对顶角的性质可知∠1=∠DOF,然后由平面直角坐标系可知∠DOB=90°=∠DOF+∠2,可知∠1+∠2=90°,再由∠1:∠2=3:6,可求得∠2=60°,因此可知∠AOE=60°,从而求得∠EOD的度数为150°.
故选:D
2.A
【分析】因为是直角三角板,所以∠ACB和∠DCF都等于90°,所以利用角的和差把选项中的角能转化成∠ACB+∠DCF即为正确答案.
解:∵∠BCD+∠ACF=∠BCD+∠ACD+∠DCF=∠ACB+∠DCF=90°+90°=180°,
∴选A
【点拨】本题中出现一副三角板,我们需注意到三角板中的直角,又提出问题为互补,所以我们应将相应的角,利用角的和差等量变化成直角,若能即为正确答案.
3.A
【分析】根据直角三角形两锐角互余、角平分线的定义、角的和差逐个判断即可得.
解:
如图1,当时
如图2,当时
因此,的角度不恒为,则①错误
如图1,当时
由角平分线的定义得
如图2,当时
由角平分线的定义得
因此,的角度恒为定值,则②正确
边与三角板的三边所在直线夹角不可能成
如图1,当时,设DE与AB的交点为F
,即
DE只与三角板的AB边所在直线夹角成,次数为1次;DB只与三角板的BC边所在直线夹角成,次数为1次
如图2,当时,延长DE交AB于点F
,即
只有DB与三角板的AB边所在直线夹角成,次数为1次
因此,在旋转过程中,两块三角板的边所在直线夹角成的次数为3次,则③错误
如图3,作
,即平分
如图4,作
显然不平分,则④错误
综上,正确的个数只有②这1个
故选:A.
【点拨】本题是一道较难的综合题,考查了直角三角形两锐角互余、角平分线的定义、角的和差等知识点,依据正确分两种情况讨论是解题关键.需注意的是,不能受两个示意图的影响,而少讨论一种情况.
4.①②④
【解析】
【分析】根据互余、互补的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠A+∠B的式子,再将∠A+∠B=180°代入即可解出此题.
【详解】∵∠A和∠B互补,
∴∠A+∠B=180°,
因为90°-∠B+∠B=90°,所以①正确;
又∠A-90°+∠B=∠A+∠B-90°=180°-90°=90°,②也正确;
(∠A+∠B)+∠B=×180°+∠B=90°+∠B≠90°,所以③错误;
(∠A-∠B)+∠B=(∠A+∠B)=×180°=90°,所以④正确,
综上可知,①②④均正确,
故答案为:①②④.
【点睛】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.
5.
【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.
解:设这个角的度数为x,
,
.
故答案为: .
【点拨】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.
6.4或5
【分析】根据已知条件可知,在第t秒时,射线OA转过的角度为40°t,射线OB转过的角度为20°t,然后按照OA、OB、OC三条射线构成相等的角分三种情况讨论:①当OA平分∠BOC;②当OC平分∠AOB;③当OB平分∠AOC,分别列方程即可求出t的值.
解:解:根据题意,在第t秒时,射线OA转过的角度为40°t,射线OB转过的角度为20°t,
①当OA,OB转到OA′,OB′的位置时,如图①所示,∠A′OC=∠A′OB′,
∵∠A′OC=180°-40°t,∠A′OB′=∠AOA′-∠AOB-∠BOB′=40°t-60°-20°t=20°t-60°,
∴180°-40°t =20°t-60°,
即t=4;
②当OA,OB转到OA′,OB′的位置时,如图②所示,∠A′OC=∠B′OC,
∵∠A′OC=40°t-180°,∠B′OC=180°-∠AOB-∠BOB′=180°-60°-20°t=120°-20°t,
∴40°t-180°=120°-20°t,
即t=5;
③当OA,OB转到OA′,OB′的位置时,如图③,∠B′OC=∠A′OB′,
∵∠B′OC=20°t-120°,∠A′OB′=∠A′OC=(180°-∠AOA′)=[180°-(360°-40°t)]=20°t-90°,
∴20°t-120°=20°t-90°,此时方程不成立.
综上所述:t的值为4或5.
故答案:4或5.
【点拨】题主要考查角的和、差关系,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.
7.35°22′ 144°38′
【解析】
根据互余两角的和为90°,可知这个角为90°-54°38′=35°22′,然后根据互为补角的两角的和为180°,可知这个角的补角为180°-35°22′=144°38′.
故答案为35°22′, 144°38′.
8.48°、132°或20°、20°
【分析】根据题意画出符合题意的图形,分两种情况得到两个角的数量关系求出角度.
解:如图,α+β=180°,β=4α-60°,
解得α=48°,β=132°;
如图,α=β,β=4α-60°,
解得α=β=20°;
综上所述,这两个角的度数分别为48°、132°或20°、20°.
故答案为:48°、132°或20°、20°.
【点拨】此题考查角度的计算,正确理解两条边分别垂直的两个角的数量关系是解题的关键.
9.
【分析】根据已知条件可直接确定∠AOB的度数,再根据补角的定义即可求解.
解:解:∵OA是表示北偏东63°方向的一条射线,OB是表示南偏东39°12′方向的一条射线,
∴∠AOB=180°-63°-39°12′=77°48′,
∴∠AOB的补角的度数是180°-77°48′=102°12′.
故答案是:102°12′.
【点拨】本题考查了余角和补角、方向角及其计算,基础性较强.
10.①②③
【分析】结合题意,根据角的度量的性质,得及,从而推导得;根据角的和差的性质,计算得以及,从而完成求解.
解:∵射线、分别经过刻度117和153
∴
把绕点逆时针方向旋转到,得
∵,
∴,即①正确;
∵射线经过刻度27
∵
∴射线经过刻度为:
∴
∴
∴,即②正确;
∵,且
∴
∴
∴射线经过刻度为:,即③正确;
故答案为:①②③.
【点拨】本题考查了角的知识;解题的关键是熟练掌握角的度量、补角、角的和差的性质,从而完成求解.
11.t=3或t=30或t=54
【分析】本题分情况讨论,当OE' 平分∠A'OM,即∠MOE'=∠A'OE',用t的式子表示∠MOE',∠A'OE',求出t的值,
当ON'平分∠A'OM,∠MON'=∠A'ON',此时分为两种情况,
第一种情况:ON'没有旋转完360°,
第二种情况:ON'旋转完了360°.用t的式子表示∠MON',∠A'ON',分别求出t的值即可.
解:解:∵∠EOM=∠EON,∠EOM+∠EON=180°
得:∠EOM=30° ,∠EON=150°
①OE' 平分∠A'OM,即∠MOE'=∠A'OE'
∠MOE'=30+9t
∠A'OE'=60+3t-9t
∴30+9t=60+3t-9t
解得t=3,
②ON'平分∠A'OM,此时分为两种情况,
第一种情况:ON'没有旋转完360°,
∠MON'=∠A'ON'
∠MON'=9t-180
∠A'ON'=90+(9t-180)-3t
∴9t-180=90+(9t-180)-3t
解得t=30,
第二种情况:ON'旋转完了360°
∠MON'=∠A'ON'
∠MON'=180-9t+360,
∠A'ON'=180-(3t-90)-(180-9t+360)
180-9t+360=180-(3t-90)-(180-9t+360)
解得t=54,
故答案为:t=3或t=30或t=54
【点拨】此题主要考查角的和差,角平分线的性质与一元一次方程的应用,解题的关键是根据题意找到等量关系求解.
12.(1)∠BOC、∠AOD(2)对顶角相等,160(3)26°
【解析】
试题分析:(1)根据互余两角和为90°,结合图形找出即可;
(2)从图形中可知∠AOC和∠DOB为对顶角,直接可求解;
(3)根据角平分线可求∠AOD的度数,然后根据对顶角和邻补角可求解.
试题解析:(1)图中∠AOF的余角是∠BOC、∠AOD(把符合条件的角都填出来);
(2)如果∠AOC=160°,那么根据对顶角相等可得∠BOD=160度;
(3)∵OE平分∠AOD,
∴∠AOD=2∠1=64°,
∴∠2=∠AOD=64°,∠3=90°﹣64°=26°.
13.(1)t=8min时,射线OC与OD重合;
(2)当t=2min或t=14min时,射线OC⊥OD;
(3)存在,详见解析.
【分析】(1)当OC与OD重合时,根据角度关系可知∠AOC=∠AOB+∠BOD,利用题中射线的旋转速度,由角度=时间×旋转速度,列出方程,求解即可得到射线OC与OD重合时的时间t;
(2)当∠COD=90°时,可分为两种情况,当OC位于OD的右边时:∠BOD+120°=∠AOC+90°;当OC位于OD左边时:∠AOC-90°-120°=∠BOD,列出对应的方程,求解即可;
(3)分三种情况来考虑,当OB为角平分线时:120°-∠AOC=∠BOD;当OC为角平分线时:∠AOC-120°=∠BOD;当OD为角平分线时:∠AOC-120°=2∠BOD,列方程求解即可.
解:解:(1)由题意得,20t=5t+120°,解得t=8,
即当t=8分钟时,射线OC与OD重合;
(2)当OC位于OD的右边时:∠BOD+120°=∠AOC+90°,则可得5t+120°=20t+90°,解得t=2分钟;
当OC位于OD左边时:∠AOC-90°-120°=∠BOD,则可得20t-90°-120°=5t,解得t=14分钟;
故当t=2或14分钟时,∠COD=90°;
(3)存在.
当OB为角平分线时:120°-∠AOC=∠BOD,则可得120°-20t=5t,解得t=4.8分钟;
当OC为角平分线时:∠AOC-120°=∠BOD,则可得20t-120°=×5t,解得t=分钟;
当OD为角平分线时:∠AOC-120°=2∠BOD,则可得20t -120°=2×5t,解得t=12分钟.
故当t=4.8或或12分钟时,射线OC,OB与OD中的某一条射线是另两条射线所夹角的角平分线.
【点拨】本题由角的边的旋转考查了角的和差运算,注意运动的不确定性所带来的多可能性.
14.(1);(2);(3)
【分析】(1)由互余得∠DOE度数,进而由角平分线得到∠AOD度数,根据BOD=180°-∠AOD可得∠BOD度数;
(2)由角平分线得出∠AOE=∠AOD=(∠AOC+90°),∠BOF=(∠BOD+90°),继而由∠EOF=180°-∠AOE-∠BOF得出结论.
(3)∠DOF=45°-∠BOD,结合已知∠AOC+∠DOF=∠EOF和∠AOC+∠BOD=90°可求∠BOD=60°,再由∠FOP=∠DOF+∠DOP即可解答.
解:(1)∵∠COD=90°,∠COE=63°,
∴∠DOE=∠COD-∠COE=27°,
∵OE是∠AOD的平分线,
∴∠AOD=2∠DOE=54°,
∴∠BOD=180°-∠AOD=180°-54°=126°;
答:∠BOD的度数为126°;
(2)∵OE是∠AOD的平分线,
∴
∵是的平分线,
∴,
∴,
∵,
∴,
答:的度数为;
(3)由(2)得∠EOF=45°,
∵∠AOC+∠DOF=∠EOF=45°,
∴∠DOF=45°-∠AOC,
又∵,
∴,
∴,
∵,
∴,,
∴,
∵,
∴,
∴.
【点拨】本题考查了角平分线的定义、余角和补角的计算、平角的定义及角的和与差,能根据图形确定所求角和已知各角的关系是解此题的关键.
15.(1)射线OC表示的方向为北偏东60°;(2)45°;(3)∠AOM=2∠NOC.
【分析】(1)根据∠MOC=∠AOC﹣∠AOM代入数据计算,即得出射线OC表示的方向;
(2)根据角的倍分关系以及角平分线的定义即可求解;
(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.
解:(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射线OC表示的方向为北偏东60°;
(2)∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°;
(3)∠AOM=2∠NOC.
令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,
∵∠AOM+∠MOC+∠BOC=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOC.
【点拨】此题考查了角的计算,余角和补角,本题难度较大,关键是熟练掌握角的和差倍分关系.
16.(1)∠AOC=144°;(2)∠BOE =81°;(3)∠EOF =117°或171°
【分析】(1)设∠BOC=α,则∠AOC=4α,根据已知条件列方程即可得到结论;
(2)由余角的定义得到∠AOD=90°-∠BOC=90°-36°=54°,根据角平分线的定义得到∠COE=∠COD=×90°=45°,于是得到结论;
(3)①根据角平分线的定义得到∠FOG=∠BOG,设∠BOG=x°,∠BOF=2x°,∠BOD=∠DOC+∠BOC=36°+90°=126°,根据比较的定义列方程即可得到结论;
②根据角平分线的定义得到∠FOG=∠BOG,推出D,O,G共线,根据角的和差即可得到结论.
解:(1)设∠BOC=α,则∠AOC=4α,
∵∠BOC+∠AOC=180°,
∴α+4α=180°,
∴α=36°,
∴∠AOC=144°;
(2)∵∠AOD与∠BOC互余,
∴∠AOD=90°-∠BOC=90°-36°=54°,
∴∠COD=180°-∠AOD-∠BOC=180°-54°-36°=90°,
∵OE平分∠COD,
∴∠COE=∠COD=×90°=45°,
∴∠BOE=∠COE+∠BOC=45°+36°=81°;
(3)①如图1,
∵OG平分∠FOB,
∴∠FOG=∠BOG,
∵∠FOD与∠BOG互补,
∴∠FOD+∠BOG=180°,
设∠BOG=x°,∠BOF=2x°,∠BOD=∠BOC+∠DOC =36°+90°=126°,
∵∠FOD=∠BOD+∠BOF,
∴126+2x+x=180,
解得:x=18,
∴∠EOF=∠BOE+∠BOF=81°+2×18°=117°;
②如图2,
∵OG平分∠FOB,
∴∠FOG=∠BOG,
∵∠FOD与∠BOG互补,
∴∠FOD+∠BOG=180°,
∴∠FOD+∠FOG=180°,
∴D,O,G共线,
∴∠BOG=∠AOD=54°,
∴∠AOF=180°-∠BOF=72°,
∴∠AOE=180°-∠BOE=180°-81°=99°,
∴∠EOF=∠AOF+∠AOE=72°+99°=171°.
【点拨】本题考查了余角和补角,角平分线的定义,补角的定义,正确的识别图形是解题的关键.
17.(1)15;(2)∠AOM=2∠NOG,理由见解析.
【解析】
【分析】(1)根据补角的定义可得∠COB=150°,根据角平分线的定义可得∠CON=90°,所以∠AOM=30°,据此即可求出t的值;
(2)令∠NOG为β,∠AOM为γ,∠MOG=90°﹣β,根据∠AOM+∠MOG+∠BOG=180°即可得到∠AOM与∠NOG满足的数量关系.
解:(1)根据题意得∠COB=180°﹣∠AOC=180°﹣30°=150°,
∴当∠CON=∠COB=90°时,直角边ON将∠COB分成∠CON:∠BON=3:2,
∴∠AOM=30°,
∴2t=30,
解得t=15;
(2)∠AOM=2∠NOG,
令∠NOG为β,∠AOM为γ,∠MOG=90°﹣β,
∵∠AOM+∠MOG+∠BOG=180°,
∴γ+90°﹣β+90°﹣β=180°,
∴γ﹣2β=0,即γ=2β,
∴∠AOM=2∠NOG.
【点拨】本题考查了角的计算,余角和补角,难度较大,解题的关键是熟练掌握角的和差倍分关系.
18.(1)∠A+∠C=90°;(2)证明见解析(3)105°
【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;
(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;
(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
解:解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∴∠D+∠DBG=180°,
∵BD⊥AM,
∴∠D=90°,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,
∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
∵BE平分∠ABD,
∴∠DBE=∠ABE,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,
∵BG∥DM,
∴∠AFB=∠GBF=β,
∵∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵BG∥DM,
∴∠AFC+∠NCF=180°,
∵∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
【点拨】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.
19.证明见解析
【解析】
试题分析:由折叠的性质得到∠MB′E=∠B=90°,∠NA′E=∠A=90°,∠MEB=∠MEB′,∠AEN=∠A′EN,再由平角的定义得到∠NEM的度数,然后互为余角的性质求解即可.
试题解析:由翻折的性质可得:∠AEN=∠A′EN,∠BEM=∠B′EM
∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°
由翻折性质可知:∠MB′E=∠B=90°
由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM
∠BEM=∠B′EM ∠BEM也是∠B′ME的一个余角
∠NEF+∠B′EM=90° ∠NEF=∠B′ME
∠ANE,∠A′NE也是∠B′ME的余角
20.(1);(2)40;30;(3).
【分析】(1)根据所提供的条件和角平分线的性质和两角互余的性质,求出角的度数;
(2)根据所提供的条件和角平分线的性质和两角互余的性质,求出角的度数;
(3)根据(1)(2)的结论,即可得到规律;
解:解:(1)∵,
∴,
∵,
∴,
∵分别平分,
∴;
(2)①∵,,
∴,
∵分别平分,
∴;
故答案为:40°;
②∵,,
∴,
∵分别平分,
∴;
故答案为:30°.
(3)由(1)(2)可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关.
∴;
故答案为:.
【点拨】此题主要考查了余角和补角,以及角平分线的定义,解题时要利用角平分线的性质和∠AOM与∠MOB互为余角找出各角之间的关系,求出各角的度数.
专题4.15 实数知识点分类训练专题(巩固篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版): 这是一份专题4.15 实数知识点分类训练专题(巩固篇)(专项练习)-八年级数学上册基础知识专项讲练(苏科版),共48页。试卷主要包含了无理数,平方根,算术平方根,立方根,实数的概念及分类,实数的性质,实数与数轴,实数的大小比较等内容,欢迎下载使用。
专题25.6 概率的计算(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题25.6 概率的计算(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共26页。试卷主要包含了单选题,四象限的概率是,解答题等内容,欢迎下载使用。
专题25.3 随机事件与概率(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版): 这是一份专题25.3 随机事件与概率(培优篇)(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共23页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。