江西省九江市实验中学高二数学 第二章 第九课时《独立重复试验与二项分布》教案 北师大版选修2-3
展开江西省九江市实验中学高中数学 第二章 第九课时 独立重复试验与二项分布教案 北师大版选修2-3
一、教学目标:1、知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。2、过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
二、教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。
教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。
三、教学方法:讨论交流,探析归纳
四、教学过程
(一)、复习引入:
1. 已知事件发生条件下事件发生的概率称为事件关于事件的条件概率,记作.
2. 对任意事件和,若,则“在事件发生的条件下的条件概率”,记作P(A | B),定义为
3. 事件发生与否对事件发生的概率没有影响,即.称与独立
(二)、探析新课:
1独立重复试验的定义:指在同样条件下进行的,各次之间相互独立的一种试验
2.独立重复试验的概率公式:
一般地,如果在1次试验中某事件发生的概率是,那么在次独立重复试验中这个事件恰好发生次的概率.它是展开式的第项
3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是
,(k=0,1,2,…,n,).
于是得到随机变量ξ的概率分布如下:
ξ | 0 | 1 | … | k | … | n |
P | … | … |
由于恰好是二项展开式
中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),
记作ξ~B(n,p),其中n,p为参数,并记=b(k;n,p).
例1.某射手每次射击击中目标的概率是0 . 8.求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率; (2)至少有 8 次击中目标的概率.(结果保留两个有效数字.)
解:设X为击中目标的次数,则X~B (10, 0.8 ) .
(1)在 10 次射击中,恰有 8 次击中目标的概率为 P (X = 8 ) =.
(2)在 10 次射击中,至少有 8 次击中目标的概率为 P (X≥8) = P (X = 8) + P ( X = 9 ) + P ( X = 10 )
.
例2.某气象站天气预报的准确率为,计算(结果保留两个有效数字):
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率
解:(1)记“预报1次,结果准确”为事件.预报5次相当于5次独立重复试验,根据次独立重复试验中某事件恰好发生次的概率计算公式,5次预报中恰有4次准确的概率
答:5次预报中恰有4次准确的概率约为0.41.
例3.某车间的5台机床在1小时内需要工人照管的概率都是,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)
解:记事件=“1小时内,1台机器需要人照管”,1小时内5台机器需要照管相当于5次独立重复试验
1小时内5台机床中没有1台需要工人照管的概率,
1小时内5台机床中恰有1台需要工人照管的概率,
所以1小时内5台机床中至少2台需要工人照管的概率为。
答:1小时内5台机床中至少2台需要工人照管的概率约为.
点评:“至多”,“至少”问题往往考虑逆向思维法
例4.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?
解:设要使至少命中1次的概率不小于0.75,应射击次
记事件=“射击一次,击中目标”,则.∵射击次相当于次独立重复试验,
∴事件至少发生1次的概率为.由题意,令,∴,∴,∴至少取5.答:要使至少命中1次的概率不小于0.75,至少应射击5次
(三)、课堂小结:1.独立重复试验要从三方面考虑第一:每次试验是在同样条件下进行第二:各次试验中的事件是相互独立的第三,每次试验都只有两种结果,即事件要么发生,要么不发生。
2.如果1次试验中某事件发生的概率是,那么次独立重复试验中这个事件恰好发生次的概率为对于此式可以这么理解:由于1次试验中事件要么发生,要么不发生,所以在次独立重复试验中恰好发生次,则在另外的次中没有发生,即发生,由,所以上面的公式恰为展开式中的第项,可见排列组合、二项式定理及概率间存在着密切的联系。
(四)、课堂练习:课本第51页练习
(五)、课后作业:课本第56页习题2-4A组中1、3、4
数学选修2-33.2独立性检验的基本思想及其初步教案及反思: 这是一份数学选修2-33.2独立性检验的基本思想及其初步教案及反思,共7页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,课后记等内容,欢迎下载使用。
高中数学人教版新课标A选修2-32.2二项分布及其应用教学设计及反思: 这是一份高中数学人教版新课标A选修2-32.2二项分布及其应用教学设计及反思,共7页。教案主要包含了复习引入,讲解新课,讲解范例,课堂练习,小结 ,课后作业,板书设计,课后记等内容,欢迎下载使用。