![人教版数学八年级下册 19.2.1 正比例函数2 教案01](http://img-preview.51jiaoxi.com/2/3/12456937/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
八年级下册19.2.1 正比例函数教案及反思
展开19.2一次函数
19.2.1 正比例函数
教学目标
(一)教学知识点
知识与技能:认识正比例函数的意义.
2.掌握正比例函数解析式特点.
3.理解正比例函数图象性质及特点.
4.能利用所学知识解决相关实际问题.
过程与方法:师生互动,讲练结合
情感态度世界观:回用运动的观点观察事物,分析事物
教学重点
1.理解正比例函数意义及解析式特点.
2.掌握正比例函数图象的性质特点.
3.能根据要求完成转化,解决问题.
教学难点 正比例函数图象性质特点的掌握.
教学过程
Ⅰ.提出问题,创设情境
一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.
1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?
2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?
3.这只燕鸥飞行1个半月的行程大约是多少千米?
我们来共同分析:
一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:
25600÷(30×4+7)≈200(km)
若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:
y=200x(0≤x≤127)
这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即
y=200×45=9000(km)
以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.
类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.
Ⅱ.导入新课
首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?
1.圆的周长L随半径r的大小变化而变化.
2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.
3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.
4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.
解:1.根据圆的周长公式可得:L=2错误! 不能通过编辑域代码创建对象。r.
2.依据密度公式p=错误! 不能通过编辑域代码创建对象。可得:m=7.8V.
3.据题意可知: h=0.5n.
4.据题意可知:T=-2t.
我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样.
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
[活动一]
活动内容设计:
画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.
1.y=2x 2.y=-2x
活动设计意图:
通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣.
教师活动:
引导学生正确画图、积极探索、总结规律、准确表述.
学生活动:
利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.
活动过程与结论:
1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | -6 | -4 | -2 | 0 | 2 | 4 | 6 |
画出图象如图(1).
2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 6 | 4 | 2 | 0 | -2 | -4 | -6 |
画出图象如图(2).
3.两个图象的共同点:都是经过原点的直线.
不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限.
[活动二]
活动内容设计:
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
活动设计意图:
通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理.
教师活动:
引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法.
学生活动:
在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由.
活动过程及结论:
经过原点与点(1,k)的直线是函数y=kx的图象.
画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线.
Ⅲ.随堂练习
用你认为最简单的方法画出下列函数图象:
1.y=错误! 不能通过编辑域代码创建对象。x 2.y=-3x
解:除原点外,分别找出适合两个函数关系式的一个点来:
1.y= 错误! 不能通过编辑域代码创建对象。x (2,3)
2.y=-3x (1,-3)
小结:
本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.
课后作业
习题11.2─1、2题.
课后反思:
人教版八年级下册19.2.1 正比例函数表格教案: 这是一份人教版八年级下册19.2.1 正比例函数表格教案,共1页。教案主要包含了复习导入 目标引领,小组合作 师生互动,精讲点拨 启发提升,当堂训练 双基堂清,恰当点评 适时反思,课外达标检测等内容,欢迎下载使用。
初中数学人教版八年级下册19.2.1 正比例函数表格教学设计: 这是一份初中数学人教版八年级下册19.2.1 正比例函数表格教学设计,共3页。
数学人教版19.2.1 正比例函数教学设计: 这是一份数学人教版19.2.1 正比例函数教学设计,共3页。