数学八年级上册1 两数和乘以这两数的差教案
展开两数和乘以这两数的差
教学内容
教科书P.30——P.31的内容
教学目标
知识与技能:能说出平方差公式的特点,并会用式子表示,能正确地利用平方差公式进行多项式的乘法;
过程与方法:使学生从已有的整式乘法的知识中提炼出两数和乘以它们的差这一乘法公式,让学生明确这一公式来源于整式乘法,又可以用于整式的乘法的辩证思想;
情感态度与价值观:通过平方差公式得出的过程,使学生明白数形结合的思想。
教学分析
重点:掌握平方差公式的特点,牢记公式。
难点:具体问题要具体分析,会运用公式进行计算。
关键:抓住本节公式结构特征,判断哪些算式符合公式特征,哪些不符合公式特征。
教学过程
一、新课引入。
王剑同学去商店买了单价是9.8元/千克的糖块10.2千克,售货员刚拿起计算器,王剑就说出应付99.6元,结果与售货员计算出的结果相吻合。售货员惊讶地问: “这位同学,你怎么算得这么快?”王剑同学说:“我利用了在数学上刚学过的一个公式。”你知道王剑同学用的是一个什么样的公式吗?你现在能算出来吗?学了本节之后,你就能解决这个问题了。
从而引出课题:平方差公式。
二、知识回顾。
1.多项式乘以多项式的法则: ___________________________。
2.利用多项式与多项式的乘法法则说出(x+a)(x+b)的结果。
3.计算:
(1)(x+3)(x-3); (2)(a+2b)(a-2b); (3)(4m+n)(4m-n); (4)(5+4y)(5-4y)。
三、引导观察。
1.请你观察一下这几个多项式与多项式相乘的乘法式子,两个因式有什么特点?积有什么特点?
2.这四个题目与(x+a)(x+b)=x2+(a+b)x+ab有什么关系?你还能再举出这样的几个例子来吗?
(引导学生发现:当a=-b时,(x+a)(x+b)=x2-b2,从而得出平方差公式。)
3.观察这个公式,你能说出它左边的特征吗?右边呢?
4.你能用图形来验证它的正确性吗?
5.你能用语言叙述这个公式吗?
四、学例及应用。
1.例1计算:(课本例1。)
(1)(a+3)(a-3); (2)(2a+3b)(2a-3b); (3)(1+2c)(1-2c)。
(教师要规范解题步骤。)
2.练习:P32练习1题
3.例2计算:1998×2002。(课本例题2。)
分析:这是一个数字计算问题,让学生分组讨论如何利用平方差公式进行计算。
在本例教学时不能仅仅着眼于应用公式的化简与计算,要让学生感受构造数学“模型”的乐趣。
4.练习:课本第32页练习第2题
5.例3街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米。问改造后的长方形草坪的面积是多少?(课本例3。)
6.练习:课本第32页练习的第3题。
初中数学1 两数和乘以这两数的差教学设计及反思: 这是一份初中数学1 两数和乘以这两数的差教学设计及反思,共2页。教案主要包含了情境导入,合作探究,板书设计等内容,欢迎下载使用。
初中数学华师大版八年级上册1 两数和乘以这两数的差教案: 这是一份初中数学华师大版八年级上册1 两数和乘以这两数的差教案,共3页。教案主要包含了教学目标,教学重难点,教学过程,教学反思等内容,欢迎下载使用。
华师大版第12章 整式的乘除12.3 乘法公式1 两数和乘以这两数的差教案: 这是一份华师大版第12章 整式的乘除12.3 乘法公式1 两数和乘以这两数的差教案,共4页。教案主要包含了教学目标,教学重点,教学难点,课前准备,课堂教学流程等内容,欢迎下载使用。