初中数学第24章 圆24.4 直线与圆的位置关系24.4.1 直线与圆的位置关系精品课后测评
展开2021年沪科版数学九年级下册
24.4《直线与圆的位置关系》同步练习卷
一、选择题
1.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是( )
A.相离 B.相切 C.相交 D.相离、相切、相交都有可能
3.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
A.0<x≤1 B.1≤x< C.0<x≤ D.x>
4.已知圆的直径是13cm,如果圆心到某直线的距离是6.5cm,则此直线与这个圆的位置关系是( )
A.相交 B.相切 C.相离 D.无法确定
5.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为( )
A.0个 B.1个 C.2个 D.3个
6.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为( )
A.相切 B.相交 C.相切或相离 D.相切或相交
7.如图,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至点C,过点C作直线OA的垂线,记为l,则下列说法正确的是( )
A.当BC=0.5时,l与⊙O相离
B.当BC=2时,l与⊙O相切
C.当BC=1时,l与⊙O相交
D.当BC≠1时,l与⊙O不相切
8.已知⊙O的半径为7 cm,圆心O到直线l的距离为6.5 cm,则直线l与⊙O的交点个数为( )
A.0 B.1 C.2 D.无法确定
9.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( )
A.r<6 B.r=6 C.r>6 D.r≥6
10.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,
若OD=2, tan∠OAB=0.5,则AB的长是( )
A.4 B.2 C.8 D.4
二、填空题
11.已知在直角坐标系内,半径为2的圆的圆心坐标为(3,﹣4),当该圆向上平移m(m>0)个单位长度时,若要此圆与x轴没有交点,则m的取值范围是 .
12.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是 .
13.在平面直角坐标系中,以点A(﹣2,3)为圆心、r为半径的圆与坐标轴恰好有三个公共点,那么r的值为 .
14.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线1的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线的距离等于1的点,即m=4,由此可知,当d=3时,m= .
15.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C相离,则a的取值范围为 .
16.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为 .
三、解答题
17.如图,在Rt△ABC中,∠C=90°,∠B=60°,若AO=x cm,⊙O的半径为1 cm,当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?
18.如图所示,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.
(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?
(2)分别以点C为圆心,2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?
19.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.
(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?
(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?
20.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角分线.
(1)以AB上的一点O为圆心,AD为弦在图中作出⊙O.(不写作法,保留作图痕迹);
(2)试判断直线BC与⊙O的位置关系,并证明你的结论.
参考答案
1.答案为:A.
2.答案为:A.
3.答案为:C.
4.答案为:B.
5.答案为:C.
6.答案为:D
7.答案为:D.
8.答案为:C.
9.答案为:C.
10.答案为:C
11.答案为:0<m<2或m>6.
12.答案为:r=2或4<r≤4.
13.答案为::3或.
14.答案为:1.
15.答案为:a<﹣2或a>2.
16.答案为:0<m<6.5.
17.解:作OD⊥AC于点D.∵∠C=90°,∠B=60°,∴∠A=30°.
∵AO=x cm,∴OD=x cm.
(1)若⊙O与直线AC相离,则有OD>r,即x>1,解得x>2;
(2)若⊙O与直线AC相切,则有OD=r,即x=1,解得x=2;
(3)若⊙O与直线AC相交,则有OD<r,即x<1,解得x<2,∴0<x<2.
综上可知:当x>2时,直线AC与⊙O相离;当x=2时,直线AC与⊙O相切;
当0<x<2时,直线AC与⊙O相交.
18.解:(1)如图所示,过点C作CD⊥AB,垂足为D.
在Rt△ABC中,BC==4 (cm),
所以CD==2 (cm).
因此,当半径为2 cm时,直线AB与⊙C相切.
(2)由(1)可知,圆心C到直线AB的距离d=2 cm,所以
当r=2 cm时,d>r,⊙C与直线AB相离;
当r=4 cm时,d<r,⊙C与直线AB相交.
19.解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,
作O′C⊥PA于C,
∵∠P=30度,
∴O′C=PO′=1cm,
∵圆的半径为1cm,
∴⊙O与直线PA的位置关系是相切;
(2)如图:当点O由O′向右继续移动时,PA与圆相交,
当移动到C″时,相切,
此时C″P=PO′=2,
∵OP=3,
∴OO'=1,OC''=OP+C''P=3+2=5
∴点O移动的距离d的范围满足1cm<d<5cm时相交,
故答案为::1cm<d<5cm.
20.(1)解:如图所示,
(2)相切;理由如下:
证明:连结OD,∵OA=OD,
∴∠OAD=∠ODA
∵AD是BAC的角平分线,则∠OAD=∠DAC,
∴∠ODA=∠DAC,
∵AC⊥BC,则∠DAC+∠ADC=90°,
∴∠ODA+∠ADC=90°,即∠ODC=90°,
∴OD⊥BC,即BC是⊙O的切线.
初中数学沪科版九年级下册24.4.1 直线与圆的位置关系精品课后练习题: 这是一份初中数学沪科版九年级下册24.4.1 直线与圆的位置关系精品课后练习题,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学九年级下册24.4.2 切线的判定与性质精练: 这是一份数学九年级下册24.4.2 切线的判定与性质精练,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
数学九年级下册24.4.1 直线与圆的位置关系精品习题: 这是一份数学九年级下册24.4.1 直线与圆的位置关系精品习题,文件包含专题248直线与圆的位置关系解析版docx、专题248直线与圆的位置关系原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。