人教版数学九年级上册期末备考专项练: 一元二次方程应用(一)
展开1.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )
A.6B.7C.8D.9
2.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到9.68万户.设全市5G用户数年平均增长率为x,则x值为( )
A.120%B.130%C.140%D.150%
3.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )
A.8%B.9%C.10%D.11%
4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )
A.4B.5C.6D.7
5.为提高人民生活幸福指数,某药厂决定降低药品的价格,已知某药品2016年的售价是100元,2018年的售价是81元,若年平均降低率相同,则年平均降价率是( )
A.10%B.11%C.12%D.8.1%
6.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20%B.40%C.18%D.36%
7.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?( )
A.4B.5C.6D.7
8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )
A.9人B.10人C.11人D.12人
9.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
10.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( )
A.8%B.9%C.10%D.11%
11.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是( )
A.AC的长B.AD的长C.BC的长D.CD的长
12.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )
A.20%B.25%C.50%D.62.5%
13.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为( )
A.8B.20C.36D.18
14.2015年某县GDP总量为1000亿元,计划到2017年全县GDP总量实现1210亿元的目标.如果每年的平均增长率相同,那么该县这两年GDP总量的平均增长率为( )
A.1.21%B.8%C.10%D.12.1%
15.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )
A.B.C.2﹣D.4﹣2
16.如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( )
A.7mB.8mC.9mD.10m
17.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为( )
A.10cmB.13cmC.14cmD.16cm
18.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为( )
A.20%B.40%C.﹣20%D.30%
19.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为( )
A.20B.40C.100D.120
20.已知a,b,c是△ABC三边的长,b>a=c,且方程ax2﹣bx+c=0的两根的差的绝对值等于,则△ABC中最大角的度数是( )
A.150°B.120°C.90°D.60°
21.从一块正方形的木板上锯掉2m宽的长方形木条,剩下的面积是48m2,则原来这块木板的面积是( )
A.100m2B.64m2C.121m2D.144m2
22.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )
A.5个B.6个C.7个D.8个
23.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
A.32B.126C.135D.144
24.某县政府2011年投资0.5亿元用于保障性房建设,计划到2013年投资保障性房建设的资金为0.98亿元.如果从2011年到2013年投资此项目资金的年增长率相同,那么年增长率是( )
A.30%B.40%C.50%D.60%
25.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )
A.7队B.6队C.5队D.4队
参考答案
1.解:设参加此次比赛的球队数为x队,根据题意得:
x(x﹣1)=36,
化简,得x2﹣x﹣72=0,
解得x1=9,x2=﹣8(舍去),
∴参加此次比赛的球队数是9队.
故选:D.
2.解:设全市5G用户数年平均增长率为x,
依题意,得:2(1+x)2=9.68,
解得:x1=1.2=120%,x2=﹣3.2(不合题意,舍去).
故选:A.
3.解:设该商店的每月盈利的平均增长率为x,根据题意得:
240000(1+x)2=290400,
解得:x1=10%,x2=﹣2.1(舍去).
故选:C.
4.解:设这种植物每个支干长出x个小分支,
依题意,得:1+x+x2=43,
解得:x1=﹣7(舍去),x2=6.
故选:C.
5.解:设年平均降价率为x,
依题意,得:100(1﹣x)2=81,
解得:x1=0.1=10%,x2=1.9(不合题意,舍去).
故选:A.
6.解:设降价的百分率为x
根据题意可列方程为25(1﹣x)2=16
解方程得,(舍)
∴每次降价得百分率为20%
故选:A.
7.解:设共有x个班级参赛,根据题意得:
=15,
解得:x1=6,x2=﹣5(不合题意,舍去),
则共有6个班级参赛.
故选:C.
8.解:设参加酒会的人数为x人,
根据题意得:x(x﹣1)=55,
整理,得:x2﹣x﹣110=0,
解得:x1=11,x2=﹣10(不合题意,舍去).
答:参加酒会的人数为11人.
故选:C.
9.解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选:C.
10.解:设平均每次下调的百分率为x,由题意,得
6000(1﹣x)2=4860,
解得:x1=0.1,x2=1.9(舍去).
答:平均每次下调的百分率为10%.
故选:C.
11.解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:
画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,
设AD=x,根据勾股定理得:(x+)2=b2+()2,
整理得:x2+ax﹣b2=0(a≠0,b≠0),
∵△=a2+4b2>0,
∴方程有两个不相等的实数根,且两根之积为﹣b2<0,即方程的根一正一负,
则该方程的一个正根是AD的长,
故选:B.
12.解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,
由题意可得:2(1+x)2=4.5,
解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),
答:该店销售额平均每月的增长率为50%;
故选:C.
13.解:根据题意列方程得
100×(1﹣x%)2=100﹣36
解得x1=20,x2=180(不符合题意,舍去).
故选:B.
14.解:设该县这两年GDP总量的平均增长率为x,根据题意,
得:1000(1+x)2=1210,
解得:x1=﹣2.1(舍),x2=0.1=10%,
即该县这两年GDP总量的平均增长率为10%,
故选:C.
15.解:设丁的一股长为a,且a<2,
∵甲面积+乙面积=丙面积+丁面积,
∴2a+2a=×22+×a2,
∴4a=2+a2,
∴a2﹣8a+4=0,
∴a===4±2,
∵4+2>2,不合题意舍,
4﹣2<2,合题意,
∴a=4﹣2.
故选:D.
16.解:设原正方形的边长为xm,依题意有
(x﹣3)(x﹣2)=20,
解得:x1=7,x2=﹣2(不合题意,舍去)
即:原正方形的边长7m.
故选:A.
17.解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,
(x﹣3×2)(x﹣3×2)×3=300,
解得x1=16,x2=﹣4(不合题意,舍去);
答:正方形铁皮的边长应是16厘米.
故选:D.
18.解:设每年投资的增长率为x,
根据题意,得:5(1+x)2=7.2,
解得:x1=0.2=20%,x2=﹣2.2(舍去),
故每年投资的增长率为为20%.
故选:A.
19.解:设围成面积为acm2的长方形的长为xcm,则宽为(40÷2﹣x)cm,依题意,得
x(40÷2﹣x)=a,整理,得
x2﹣20x+a=0,
∵△=400﹣4a≥0,
解得a≤100,
故选:D.
20.解:设x1、x2是ax2﹣bx+c=0的两根,则x1+x2=
x1x2==1,
∵x1﹣x2的绝对值等于,
∴|x1﹣x2|=,
解以上方程组:(x1+x2)2﹣4x1x2=2,
解得:b=a,
∵b>a=c,
∴是等腰三角形b为底,
∴∠A=∠C=30°,
∴∠B=120度,
故选:B.
21.解:设原来正方形木板的边长为xm.
由题意,可知x(x﹣2)=48,
解得x1=8,x2=﹣6(不合题意,舍去).
所以8×8=64.
故选:B.
22.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,
x(x﹣1)÷2=21,
解得x=7或﹣6(舍去).
故应邀请7个球队参加比赛.
故选:C.
23.解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:
x(x+16)=192,
解得:x1=8,x2=﹣24,(不合题意舍去),
故最小的三个数为:8,9,10,
下面一行的数字分别比上面三个数大7,即为:15,16,17,
第3行三个数,比上一行三个数分别大7,即为:22,23,24,
故这9个数的和为:8+9+10+15+16+17+22+23+24=144.
故选:D.
24.解:设这两年中投入资金的平均年增长率是x,由题意得:
0.5(1+x)2=0.98,
解得:x1=40% x2=﹣2.4(不合题意舍去).
答:这两年中投入资金的平均年增长率约是40%.
故选:B.
25.解:设邀请x个球队参加比赛,
依题意得1+2+3+…+x﹣1=10,
即=10,
∴x2﹣x﹣20=0,
∴x=5或x=﹣4(不合题意,舍去).
故选:C.
人教版数学九年级上册专项培优练习四《一元二次方程实际应用解答题专练》(含答案): 这是一份人教版数学九年级上册专项培优练习四《一元二次方程实际应用解答题专练》(含答案),共11页。
人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案): 这是一份人教版数学九年级上册专项培优练习三《一元二次方程实际应用》(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版九年级上册21.1 一元二次方程精练: 这是一份人教版九年级上册21.1 一元二次方程精练,共8页。