2020-2021学年5.5确定二次函数的表达式备课ppt课件
展开5.5 确定二次函数的表达式
教学目标
【知识与能力】
1.能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.
2.能够根据二次函数的不同表示方式,从不同侧面对函数性质进行研究.
3.经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点.
【过程与方法】
1.通过解决用二次函数所表示的问题,培养学生的运用能力.
2.通过对二次函数的三种表示方式的特点进行研究,训练大家的求同求异思维.
【情感态度价值观】
1.通过用二次函数解决实际问题,让学生认识数学与人类生活的密切联系及对人类历史
发展的作 用,同时激发他们学习数学的兴趣.
2.初步学会从数 学的角度提出问题、理解问题, 并能综合运用所学的知识和技能解决问题,发展应用意识.
教学重难点
【教学重点】
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.
能够根据二次 函数的不同表示方式,从不同的侧面对函数性质进行研究.
【教学难点】
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题.
课前准备
无
教学过程
Ⅰ. 创设问题情境,引入新课
[师]函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广
告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:
x(千克) | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
y(元) | 0 | 121世纪教育网 | 2 | 3 | 4 | 5 | 6 |
这是售货员为了便于计价,常常制作这种表示售价与数量关系的表,即用表格表示函数.用表达式和图象法来表示函数的情形我们更熟悉.这节课我们不仅要掌握三种表示方式,而且要体会三种方式之间的联系与各自不同的特点,在什么情况下用哪一种方式更好?
Ⅱ.新课讲解
一、试一试
长方形的周长为20 cm,设它的一边长为xcm,面积为ycm2.y随x变化而变化的规律是什么?你能分别用函数表达式、表格和图象表示出来吗?
(1)用函数表达式表示:y= .
(2)用表格表示:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
10-x |
|
|
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
|
(3)用图象表示:
[师]请大家互相交流.
[生](1)一边长为x cm,则另一边长为(10-x)cm,所以面积为:
y=x(10-x)=-x2+10x
(2)表中第二行从左至
右依次填9、8、7、6、5、21世纪教育网
4、3、2、1;第三行从左至
右依次填9、16、21、24、25、
24、21、16、9.
(3)图象如右图.
[师]大家可能注意到了函数的图象在第一象限.可是我们知道开口向下的抛物线可以到达第四象限和第三象限,这是什么原因呢?
[生]因为自变量的取值只取到了1至9,而这些点正好都在第一象限,所以图象只能画在第一象限.
[师]大家同意这种说法吗?
[生]不同意.不是因为列表中自变量的取值的原因,而是由于实际情况.函数值y是面积,而面积是不能为负值的.如果脱离了实际问题,单纯地画函数y=-x2+10x的图象,就不是在第一象限作图象了.
[师]非常棒.
二、议一议
(1)在上述问题中,自变量x的取值范围是什么?
(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况.
[师]自变量x的取值范围即是使函数有意义的自变量的取值范围.请大家互相交流.
[生](1)因为x是边长,所以x应取正数,即x>0,又另一边长(10-x)也应大于0,即10-x>0,所以x<10,这两个条件应该同时满足,所以x的取值范围是0<x<10.
(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=-x2+10x化成顶点式.当x=-时,函数y有最大值.
∴y=-x2+10x=-x2+10x=-(x2-10x)
=-(x2-10x+25-25)
=-(x-5)2+25.
∴当x=5时,长方形的面积最大,最大面积是25 cm2.
可以通过观察图象得知.
也可以代入顶点坐标公式中求得.
当x=-=5时,y最大==25cm2.
当x由1至5逐渐增大时,y的值逐渐增大,当x由5至10逐渐增大时,y的值逐渐减小。
[师]回答得棒极了.
这是一个实际问题,面积y为边长x的二次函数,求当x取何值时,长方形的面积最大.实际上就是求二次函数的最值,描述y随x的变化而变化的情况,就是以对称轴为分界线,一边为y随x的增大而减小,另一边是y随x的增大而增大.
三、做一做
两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?你能分别用函数表示式、表格和图象表示这种变化吗?
1.用函数表达式表示:y= .
2.用表格表示:
x |
|
|
|
|
|
|
|
y |
|
|
|
|
|
|
|
3.用图象表示:
4.根据以上三种表示方式问答下列问题:
(1)白变量x的取值范围是什么?
(2)图象的对称轴和顶点坐标分别是什么?
(3)如何描述y随x的变化而变化的情况?
(4)你是分别通过哪种表示方式回答上面三个问题的?
[师]请大家互相交流.
[生]解:1.因为较大的一个数为x,那么较小的数为(x-2),则积y=x(x-2)=x2-2x所以函数的表达式为y=x2-2x.
2.21世纪教育网
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 15 | 8 | 3 | 0 | -1 | 0 | 3 | 8 | 15 |
3.图象如右图.
4.(1)因为数可以
是正数、负数和零,所
以x的取值范围为任何
实数.
(2)y=x2-2x=(x2-2x
+1)-1=(x-1)2-1.
因此图象的对称轴为x=1,顶点坐标为(1.-1).
(3)因为开口向上,对称轴x=1,所以在对称轴左侧.即x<1时,y的值随x值的增大而减小;在对称轴右侧,即x>1时,y的值随x值的增大而增大.
(4)通过观察图象可知.
四、议一议
二次函数的三种表示方式有什么特点?它们之间有什么联系?与同伴进行交流.[来
[生]表格可以直观地找到对应点,图象就是把一对一对的对应点连接起来的,表达式反映出函数与自变量之间的关系.
它们之间的联系是:根据表达式可以求得一对一对的对应点,用光滑的曲线把对应点连接起来即为图象.
[师]很好.下面我们来更系统地学习它们各自的特点及联系.
函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简洁地表示出变量之间的关系.这三种表示方式各自有各自的优点,它们服务于不同的需要.
它们的联系是三种方式可以互化,由表达式可转化为表格和图象表示,每一种方式都可转化为另两种方式表示.
Ⅲ:课堂练习
1.(1)你知道下面每一个图形中各有多少个小圆圈吗?第6个图形中应该有多少个小圆圈?为什么?
(2)完成下表:
边上的小圆圈数 | 1 | 2 | 3 | 4 | 5 |
小圆圈的总数 |
|
|
|
|
|
(3)如果用n表示等边三角形边上的小圆圈数,m表示这个三角形中小圆圈的总数,那么m和n的关系是什么?
解:(1)观察前5个图形可知,第2个图形比第1个多2个小圆圈,第3个比第2个多3个,第4个比第3个多4个,第5个比第4个多5个,据此第6个应比第5个多6个小圆圈,因此第6个图形应该有21个小圆圈.
(2)从左至右应填1,3,6.10,15.
(3)m=.
Ⅳ.课时小结
本节课我们经历了用三种方式表示变量之间二次函数关系的过程,体会了三种方式之间的联系与各自不同的特点.根据二次函数的不同表示方式,从不同的侧面对函数性质进行了研究.如最值问题和y随x的变化而变化等问题.
Ⅴ.课后作业
习题2.6
Ⅵ. 活动与探究
2.(1)你知道下面每一个图形中各有多少个圆圈吗?为什么?
(2)完成下表;
边上的小圆圈数 | 1 | 2 | 3 | 4 | 5 |
小圆圈的总数 |
|
|
|
| 21世纪教育网 |
(3)如果用n表示六边形边上的小圆圈数,m表示这个六边形中小圆圈的总数,那么m和n的关系是什么?
解:(1)第1个图形中有1个小圆圈.
第2个图形中有1+6=7个小圆圈.
第3个图形中有7+2×6=19个小圆圈.
第4个图形中有19+3×6=37个小圆圈.
(2)从左至右填1.7,19,37,61.
(3)m=6×+1=3n2-3n+1.
初中数学青岛版九年级下册5.5确定二次函数的表达式完美版ppt课件: 这是一份初中数学青岛版九年级下册<a href="/sx/tb_c102789_t3/?tag_id=26" target="_blank">5.5确定二次函数的表达式完美版ppt课件</a>,共7页。PPT课件主要包含了学习目标,yx2-3x+2等内容,欢迎下载使用。
数学5.5确定二次函数的表达式完美版课件ppt: 这是一份数学5.5确定二次函数的表达式完美版课件ppt,文件包含55确定二次函数的表达式课件pptx、55确定二次函数的表达式教案docx等2份课件配套教学资源,其中PPT共10页, 欢迎下载使用。
数学九年级下册5.5确定二次函数的表达式教学课件ppt: 这是一份数学九年级下册5.5确定二次函数的表达式教学课件ppt,共20页。PPT课件主要包含了学习目标,抛物线,直线xh,复习回顾,新知探究,课堂小结,当堂检测,yx2-2x-3等内容,欢迎下载使用。