|试卷下载
搜索
    上传资料 赚现金
    2.5 等比数列的前n项和练习题01
    2.5 等比数列的前n项和练习题02
    2.5 等比数列的前n项和练习题03
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标A必修52.5 等比数列的前n项和同步测试题

    展开
    这是一份高中数学人教版新课标A必修52.5 等比数列的前n项和同步测试题,共11页。试卷主要包含了求和等内容,欢迎下载使用。

    2.5 等比数列的前n

    基础过关练

    题组 等比数列前n项和的有关计算

    1.在等比数列{an},a1=1,a4=,则该数列的前10项和S10=(  )          

    A.2- B.2- C.2- D.2-

    2.Sn为等比数列{an}的前n项和,27a4+a7=0,等于(  )

    A.10 B.9 C.-8 D.-5

    3.(2019北京西城高二期末)数列{an}的前n项和为Sn,a1=3,an+1=2an(n∈N*),S5等于(  )

    A.32 B.48 C.62 D.93

    4.在明朝程大位的《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,意思是:它一共有7,每层悬挂的红灯数是上一层的2,共有381盏灯,则塔顶的灯的盏数为(  )

    A.5 B.6 C.4 D.3

    5.(2020广东广州荔湾高二期末)已知各项均为正数的数列{an}为等比数列,Sn是其前n项和,S3=7a3,a2a4的等差中项为5,S5=(  )

    A.29 B.31 C.33 D.35

    题组二 等比数列前n项和的性质

    6.设等比数列{an}的前n项和为Sn,S2=3,S4=15,S6=(  )

     A.31 B.32 C.63 D.64

    7.在数列{an},an+1=can(c为非零常数),且前n项和Sn=3n-2+k,则实数k的值为(  )

    A.-1 B.- C. D.-

    8.已知等比数列{an}共有2n,其和为-240,且奇数项的和比偶数项的和大80,则公比q=    .

    题组三 错位相减法求和

    9.(1)求和:1×2+2×22+3×23+…+n×2n;

    (2)求数列1,3a,5a2,7a3,…,(2n-1)an-1的前n项和.

     

     

     

     

     

     

     

    10.(2020江苏徐州高二期末)已知Sn为等差数列{an}的前n项和,a3=6,S7=4a7.

    (1)求数列{an}的通项公式;

    (2)bn=,求数列{bn}的前n项和Tn.

     

     

     

     

    题组四 等比数列的综合问题

    11.已知等比数列{an}的前n项和为Sn,4a1,2a2,a3成等差数列.a1=1,S4=(  )

    A.7 B.8 C.15 D.16

    12.{an}是首项为a1,公差为-1的等差数列,Sn为其前n项和.S1,S2,S4成等比数列,a1的值为    .

    13.已知{an}是公差不为零的等差数列,a1=1,a1,a3,a9成等比数列.

    (1)求数列{an}的通项公式;

    (2)求数列{}的前n项和Sn.

     

     

     

     

     

     

    能力提升练

    一、选择题

    1.(2020河南郑州外国语学校高一期中,★★☆)已知等比数列{an}的前n项和为Sn,=a2,S3,S1,S2成等差数列,S4=(  )

     A.10 B.12 C.18 D.30

    2.(2020上海建平中学高一期末,★★☆)Sn为数列{an}的前n项和,an+Sn=4(n∈N*),S4的值为(  )

    A.3 B. C. D.不确定

    3.(2019广东东莞高二期末,★★☆)已知等比数列{an}的前n项和为Sn,a2a5=4a4,a32a6的等差中项为,S5=(  )

    A.29 B.31 C.33 D.36

    4.(2019吉林松原扶余一中高一期末,★★☆)我国古代数学名著《九章算术》中有如下问题:“今有女子善织,日自,五日织五尺,问日织几何?”意思是:“女子善于织布,每天织出的布都是前一天的2,已知她5天共织布5,问这女子每天分别织布多少?”根据上述已知条件,该女子第3天所织布的尺数为(  )

    A. B. C. D.

    5.(2020广东深圳宝安高二期末,★★★)已知{an}是首项为32的等比数列,Sn是其前n项和,=,则数列{|log2an|}10项的和为(  )

    A.58 B.56 C.50 D.45

    6.(2020安徽合肥一中、合肥六中高一期末,★★★)已知数列{an}的前n项和为Sn,an=4+,若对任意n∈N*,都有1≤p(Sn-4n)≤3成立,则实数p的取值范围是(  )

    A.(2,3) B.[2,3]

    C. D.

    二、填空题

    7.(2020北京石景山高二期末,★★☆)已知数列{an}是各项均为正数的等比数列,a2=1,a3+a4=6.设数列{an-n}的前n项和为Sn,那么S4    S5.(“>”“<或“=”)

    8.(2020河北石家庄第一中学高一期末,★★☆)一个项数是偶数的等比数列,它的偶数项的和是奇数项的和的两倍,它的首项为1,且中间两项的和为24,则此等比数列的项数为    .

    9.(2020河南洛阳高二期末,★★★)已知数列{an}满足a1=1,anan+1=2n(n∈N*),Sn是数列{an}的前n项和,a2 020=    ,S2 020=    .

    三、解答题

    10.(2019江西宜春高二期末,★★☆)已知数列{an}为等差数列,数列{bn}为等比数列,满足b1=a2=3,a3+a5=14,a4=b2-2.

    (1)求数列{an}{bn}的通项公式;

    (2)cn=,求数列{cn}的前n项和Tn.

     

     

     

     

     

     

    11.(2020安徽合肥高一期末,★★☆)已知数列{an}满足a1=-2,an+1=2an+4.

    (1)证明:{an+4}是等比数列;

    (2)求数列{an}的前n项和Sn.

     

     

     

    答案全解全析

    基础过关练

    1.B 设等比数列{an}的公比为q,已知a1=1,a4=a1q3=,q=,所以S10===2-.故选B.

    2.A 设数列{an}的公比为q,27a4+a7=0,a4(27+q3)=0,因为a4≠0,所以27+q3=0,解得q=-3,==10.

    3.D 由a1=3,an+1=2an(n∈N*)可知,数列{an}是以3为首项,2为公比的等比数列,所以S5==93.故选D.

    4.D 由题意可知,每层悬挂的灯数从上到下依次构成等比数列,公比为2,设顶层的灯数为a1,=a1(27-1)=127a1=381,解得a1=3,故选D.

    5.B 设等比数列{an}的首项为a1,公比为q.S3=7a3,a1+a2+a3=7a3,所以6a3-(a1+a2)=0,6q2-q-1=0,解得q=q=-(舍去).依题意,a2+a4=10,所以a1(q+q3)=10,所以a1=16.所以S5==31.故选B.

    6.C 由等比数列前n项和的性质,(S4-S2)2=S2·(S6-S4),122=3×(S6-15),解得S6=63.故选C.

    7.D ∵an+1=can,c为非零常数,∴{an}为等比数列,Sn=3n-2+k=·3n+k,∴根据等比数列前n项和的性质得,k=-.

    8.答案 2

    解析 由题意,解得S=-80,S=-160,∴q===2.

    9.解析 (1)Sn=1×2+2×22+3×23+…+n×2n①,

    2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1②,

    ①-②,(1-2)Sn=2+22+23+…+2n-n×2n+1,

    -Sn=-n×2n+1,

    ∴Sn=2-2×2n+n×2n+1=(n-1)×2n+1+2.

    (2)设该数列的前n项和为Sn,a=0,Sn=1;a=1,数列为1,3,5,7,…,2n-1,Sn==n2;

    a≠1a≠0,Sn=1+3a+5a2+7a3+…+(2n-1)an-1,③

    aSn=a+3a2+5a3+7a4+…+(2n-1)an,④

    ③-④,Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,

    (1-a)Sn=1-(2n-1)an+2(a+a2+a3+…+an-1)=1-(2n-1)an+2·=1-(2n-1)an+.

    1-a≠0,∴Sn=+.

    综上,Sn=

    10.解析 (1)设等差数列{an}的首项为a1,公差为d.

    解得所以an=2n.

    (2)(1),bn===,

    所以Tn=++++…+①,

    Tn=+++…++②,

    ①-②,Tn=+++…+-,

    所以Tn=2+1++++…+-=-=4-=4-.

    11.C 设等比数列{an}的公比为q.∵4a1,2a2,a3成等差数列,∴4a2=4a1+a3,4a1q=4a1+a1q2,q2-4q+4=0,∴q=2.a1=1,∴S4==15.

    12.答案 -

    解析 由题意得S1=a1,S2=a1+a2=2a1-1,S4=4a1+×(-1)=4a1-6.因为S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),解得a1=-.

    13.解析 (1)设等差数列{an}的公差为d.a1,a3,a9成等比数列,=a1a9,(1+2d)2=1×(1+8d),解得d=1d=0(舍去).故数列{an}的通项公式为an=1+(n-1)×1=n.

    (2)(1)=2n,由等比数列的前n项和公式,Sn=2+22+23+…+2n==2n+1-2.

    能力提升练

    一、选择题

    1.A 设等比数列{an}的公比为q,=a2,=a1q,a1=q.①

    S3,S1,S2成等差数列,

    ∴2S1=S3+S2,2a1=2a1+2a1q+a1q2,②

    联立①②q=0(舍去)q=-2,

    ∴a1=q=-2.

    ∴S4===10.

    2.C 由an+Sn=4(n∈N*)①,an-1+Sn-1=4(n≥2,n∈N*)②,①-②,2an-an-1=0,

    an=an-1(n≥2),所以数列{an}是公比为的等比数列.又由a1+S1=4可得,a1=2,所以S4==4-=.

    3.B 设等比数列{an}的首项为a1,公比为q.

    a2a5=4a4,a32a6的等差中项为,可得

    解得

    所以S5===31.

    故选B.

    4.B 设这女子每天分别织布的尺数形成数列{an},则数列{an}为等比数列,公比q=2,其前5项和S5=5,

    ∴5=,解得a1=,

    ∴a3=×22=.故选B.

    5.A 设等比数列{an}的公比为q.∵{an}是首项为32的等比数列,Sn是其前n项和,=,∴=,∴1+q3=,∴q=,∴an=32·=27-2n,∴|log2an|=|7-2n|,

    数列{|log2an|}10项的和为5+3+1+1+3+5+7+9+11+13=58.故选A.

    6.B 因为an=4+,所以Sn=4n+=4n+,

    所以Sn-4n=.n∈N*,≤1-,所以≤1,

    Sn-4n的最大值为1,最小值为.若对任意n∈N*,都有1≤p(Sn-4n)≤3,≤p≤成立,则只需满足p≤p≥即可,所以2≤p≤3,即实数p的取值范围是[2,3].故选B.

    二、填空题

    7.答案 <

    解析 设等比数列{an}的公比为q(q>0).

    由题意得解得∴an=a1qn-1=2n-2.

    ∴S5-S4=a5-5=23-5=3>0,S5>S4.

    8.答案 8

    解析 设该数列为a1,a2,…,a2n,公比为q,则由题意可得q=2,an+an+1=24.a1=1,所以qn-1+qn=24,2n-1+2n=24,解得n=4,故项数为8.

    9.答案 21 010;3(21 010-1)

    解析 因为anan+1=2n,所以an+1an+2=2n+1,所以=,=2.

    a1=1,a1a2=2,所以a2=2.所以a1,a3,a5,…是首项为1,公比为2的等比数列,a2,a4,a6,…是首项为2,公比为2的等比数列.所以a2 020=a2×21 009=21 010,S2 020=(1+21+22+…+21 009)+(2+22+23+…+21 010)=3×(1+21+22+…+21 009)=3×=3(21 010-1).

    三、解答题

    10.解析 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.

    由等差数列的性质得a3+a5=2a4=14,∴a4=7.

    ∵a2=3,∴d===2,

    ∴an=a2+(n-2)·d=3+(n-2)×2=2n-1.

    ∴a4=7,∴b2=9,b1=3,∴q=3,

    bn=3n.

    (2)结合(1)cn===(2n-1)·,

    Tn=1×+3×+5×+…+(2n-3)×+(2n-1)×,①

    式左右两边同乘,Tn=1×+3×+…+(2n-3)×+(2n-1)×,②

    ①-②,Tn=+2×+2×+…+2×-(2n-1)×

    =+-(2n-1

    =+-3×-(2n-1

    =-(2n+2,

    Tn=1-(n+1.

    11.解析 (1)证明:由题意,an+1=2an+4,所以an+1+4=2an+8=2(an+4),=2,

    又因为a1=-2,所以a1+4=2.所以{an+4}是以2为首项,2为公比的等比数列.

    (2)(1),an+4=2n,an=2n-4,

    所以Sn=a1+a2+…+an=(2-4)+(22-4)+…+(2n-4)=(2+22+…+2n)-4n=-4n=2n+1-2-4n,Sn=2n+1-4n-2.

     

     

    相关试卷

    知识讲解_等比数列及其前n项和_基础练习题: 这是一份知识讲解_等比数列及其前n项和_基础练习题,共14页。

    知识讲解_等比数列及其前n项和_提高练习题: 这是一份知识讲解_等比数列及其前n项和_提高练习题,共13页。

    考点6.3 等比数列及其前n项和(解析版)练习题: 这是一份考点6.3 等比数列及其前n项和(解析版)练习题,共11页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2.5 等比数列的前n项和练习题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map