苏科版九年级上册第1章 一元二次方程1.3 一元二次方程的根与系数的关系优秀练习
展开2021年苏科版数学九年级上册
1.3《一元二次方程的根与系数的关系》同步练习卷
一、选择题
1.已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.两个根都是自然数
D.无实数根
2.下列一元二次方程有两个相等实数根的是( )
A.x2﹣2x+1=0 B.2x2﹣x+1=0 C.4x2﹣2x﹣3=0 D.x2﹣6x=0
3.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.无实数根 D.无法确定
4.若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是( )
A.m<1 B.m≤1 C.m>1 D.m≥1
5.已知一次函数y=ax+c图象如图,那么一元二次方程ax2+bx+c=0根的情况是( )
A.方程有两个不相等的实数根 B.方程有两个相等的实数根
C.方程没有实数根 D.无法判断
6.关于x的一元二次方程kx2+4x+4=0有两个不相等的实数根,则k的取值范围是( )
A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0
7.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为( )
A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0
8.已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1、x2,则x12x2+x1x22的值为( )
A.﹣3 B.3 C.﹣6 D.6
9.若关于x的一元二次方程x2+mx+m2-3m+3=0的两根互为倒数,则m的值等于( )
A.1 B.2 C.1或2 D.0
10.已知m,n是方程x2-2x-1=0的两实数根,则+的值为( )
A.-2 B.- C. D.2
二、填空题
11.若关于x的一元二次方程(m﹣1)x2﹣4x+1=0有两个不相等的实数根,则m的取值范围为 .
12.若关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根,则m的值可能是______(写出一个即可).
13.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等实数根,则a取值范围是______.
14.若关于x的方程x2﹣5x+k=0的一个根是0,则另一个根是 ,k= .
15.设x1,x2是方程4x2+3x﹣2=0的两根,则x1+x2= ,x1x2= .
16.已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是________.
三、解答题
17.关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.
(1)若m是方程的一个实数根,求m的值;
(2)若m为负数,判断方程根的情况.
18.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)当方程有一个根为1时,求k的值.
19.关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)当m取满足条件的最大整数时,求方程的根.
20.已知关于x的方程kx2﹣3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
参考答案
1.答案为:A.
2.答案为:A.
3.答案为:A.
4.答案为:B.
5.A
6.D
7.B.
8.A.
9.B
10.A
11.答案为:m<5且m≠1
12.答案为:0.
13.答案为:a>﹣2.25且a≠0.
14.答案为:5,0.
15.答案为:,﹣.
16.答案为:2.
17.解:(1)∵m是方程的一个实数根,
∴m2﹣(2m﹣3)m+m2+1=0,
∴;
(2)△=b2﹣4ac=﹣12m+5,
∵m<0,
∴﹣12m>0.
∴△=﹣12m+5>0.
∴此方程有两个不相等的实数根.
18. (1)证明:△=b2﹣4ac,
=[﹣(2k+1)]2﹣4(k2+k),
=4k2+4k+1﹣4k2﹣4k=1>0.
∴方程有两个不相等的实数根;
(2)∵方程有一个根为1,
∴12﹣(2k+1)+k2+k=0,即k2﹣k=0,
解得:k1=0,k2=1.
19.解:(1)∵关于x的一元二次方程(m-2)x2+2mx+m+3=0有两个不相等的实数根,
∴m-2≠0且Δ=(2m)2-4(m-2)(m+3)=-4(m-6)>0.
解得m<6且m≠2.
∴m的取值范围是m<6且m≠2.[来源:学&科&网Z&X&X&K]
(2)在m<6且m≠2的范围内,最大整数为5.
此时,方程化为3x2+10x+8=0.
解得x1=-2,x2=-.
20.解:(1)当k=0时,原方程为﹣3x+1=0,解得:x=,∴k=0符合题意;
当k≠0时,原方程为一元二次方程,
∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k×1≥0,解得:k≤.
综上所述,k的取值范围为k≤.
(2)∵x1和x2是方程kx2﹣3x+1=0的两个根,∴x1+x2=,x1x2=.
∵x1+x2+x1x2=4,∴+=4,解得:k=1,
经检验,k=1是分式方程的解,且符合题意.
∴k的值为1.
初中数学苏科版九年级上册1.3 一元二次方程的根与系数的关系习题: 这是一份初中数学苏科版九年级上册1.3 一元二次方程的根与系数的关系习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学苏科版九年级上册1.3 一元二次方程的根与系数的关系课时练习: 这是一份初中数学苏科版九年级上册1.3 一元二次方程的根与系数的关系课时练习,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
苏科版九年级上册1.3 一元二次方程的根与系数的关系综合训练题: 这是一份苏科版九年级上册1.3 一元二次方程的根与系数的关系综合训练题,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。