初中数学第4章 相似三角形4.2 由平行线截得的比例线段测试题
展开
4.2由平行线截得的比例线段同步练习浙教版初中数学九年级上册
一、选择题(本大题共12小题,共36.0分)
- 已知,求作x,则下列作图正确的是
A. B.
C. D.
- 如图,在中,点D在BC边上,连结AD,点G在线段AD上,,且交AB于点E,,且交CD于点F,则下列结论一定正确的是
A.
B.
C.
D.
- 如图,在中,,以下结论正确的是
A.
B.
C.
D.
- 如图,AD是的高,E是AB边的中点,,F为垂足,若,则DC的长是
A.
B.
C. 2
D.
- 如图,在中,,则下列比例式一定正确的是
A.
B.
C.
D.
- 如图,直线,直线AC和DF被,,所截,,,,则DE的长为
A. 2
B. 3
C. 4
D.
- 如图,在中,点D,M都是AB上的点,点N是AC上的点,已知,,下列结论:其中正确的有
A. 0个
B. 1个
C. 2个
D. 3个
- 如图,在中,点D,E分别在AB,AC上,,下列比例式中,不正确的是
A.
B.
C.
D.
- 如图,在平面直角坐标系中,O为坐标原点,点A在第一象限内,点B在x轴的正半轴上,点G为的重心,连结BG并延长,交OA于点C,反比例函数的图象经过C,G两点若的面积为6,则k的值为
A.
B.
C.
D. 3
- 如图,,若,则EG与GC的关系是
A.
B.
C.
D.
- 如图所示,已知在中,,,下列各式中不一定成立的是
A.
B.
C.
D.
- 如图,在中,,且,则的值为
A.
B.
C.
D.
二、填空题(本大题共4小题,共12.0分)
- 如图,,如果,,,那么 .
|
- 如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上若线段,则线段 cm.
|
- 如图,在中,,若,则 .
|
- 在中,,,点P是直线AB上一点,且,过点P作BC边的平行线,交直线AC于点M,则MC的长为 .
三、计算题(本大题共4小题,共24.0分)
- 如图,已知M、N为的边BC上的两点,且满足,一条平行于AC的直线分别交AB、AM和AN的延长线于点D、E和F,求的值.
|
- 如图,在中,D、E、F分别是AB、BC上的点,且,,,,求EF和FC的长.
|
- 如图,.
,,AE::3,求EF的长.
,,AE:,求EF的长.
|
- 如图,已知中,D、E、F分别在边AB、AC、BC上,且,,,,,,求AC、CF的长.
|
答案和解析
1.【答案】A
【解析】略
2.【答案】D
【解析】略
3.【答案】C
【解析】略
4.【答案】C
【解析】略
5.【答案】C
【解析】略
6.【答案】D
【解析】略
7.【答案】D
【解析】略
8.【答案】C
【解析】解:,
,,,,
选项A、B、D均正确,
故选C.
易错警示:运用平行线分线段成比例的基本事实的推论时,一定要找准线段的对应关系.
9.【答案】B
【解析】解:过点C作于N,过点G作于M,如图,
点G为的重心,
,
易知,
,
设,则,
,,
,
,
,
为的中线,
,
即,
.
故选B.
10.【答案】B
【解析】略
11.【答案】D
【解析】,
,,故A中式子成立.
,
,,,
,,故B,C中式子成立
,,
四边形AEDF是平行四边形,
,
,故D中式子不一定成立故选D.
12.【答案】A
【解析】解:,
,
的值为,故选A.
13.【答案】
【解析】略
14.【答案】12
【解析】略
15.【答案】12
【解析】略
16.【答案】6或12
【解析】略
17.【答案】解:过N、M分别作AC的平行线交AB于H、G,交AM于K,如图,
,
,
,
,,
,
,
,
,,
,
.
【解析】过N、M分别作AC的平行线交AB于H、G,交AM于K,如图,利用平行线分线段成比例定理得到,利用三角形中位线性质得到,,则,所以,然后利用得到,,然后利用比例性质可求出.
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.作,构造平行线分线段成比例的基本图形是解决问题的关键.
18.【答案】解:,
,即,
,
,
,
,即,
,
.
【解析】根据平行线分线段成比例定理,由得,可计算出,则,然后再由得到,可计算出,所以.
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
19.【答案】解:过点A作交CD于N,交EF于M,如图,
,
四边形AMFB、四边形MNCF都为平行四边形,
,
,
,
,
,
;
四边形AMFB、四边形MNCF都为平行四边形,
,
,
,
,
,
.
【解析】过点A作交CD于N,交EF于M,如图,先判断四边形AMFB、四边形MNCF都为平行四边形得到,则,再根据平行线分线段成比例得到,则可计算出EM,然后计算即可;
与方法一样得到,则,再根据平行线分线段成比例得到,则,然后计算即可.
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
20.【答案】解:,
,,
,,
,,
,
,,
四边形BDEF是平行四边形,
,
.
【解析】由,可得,,即可得到,,再证明四边形BDEF是平行四边形,可得即可解决问题.
本题考查平行线分线段成比例定理,平行四边形的判定和性质等知识,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.
初中数学4.2 由平行线截得的比例线段同步测试题: 这是一份初中数学4.2 由平行线截得的比例线段同步测试题,共5页。试卷主要包含了【推理能力】已知,故选C等内容,欢迎下载使用。
初中数学浙教版九年级上册4.2 由平行线截得的比例线段精品随堂练习题: 这是一份初中数学浙教版九年级上册4.2 由平行线截得的比例线段精品随堂练习题,共19页。试卷主要包含了5 B等内容,欢迎下载使用。
浙教版九年级上册4.2 由平行线截得的比例线段精品达标测试: 这是一份浙教版九年级上册4.2 由平行线截得的比例线段精品达标测试,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。