专题08 平面解析几何-十年(2012-2021)高考数学真题分项汇编(浙江专用)
展开专题08平面解析几何
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2020·浙江高考真题)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y=图像上的点,则|OP|=( )
A. B. C. D.
2.(2019·浙江高考真题)渐近线方程为的双曲线的离心率是
A. B.1
C. D.2
3.(2018·浙江高考真题)双曲线的焦点坐标是
A., B.,
C., D.,
4.(2017·浙江高考真题)椭圆的离心率是( )
A. B. C. D.
5.(2016·浙江高考真题(理))已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
6.(2015·浙江高考真题(理))如图,设抛物线的焦点为 ,不经过焦点的直线上有三个不同的点, ,,其中点 ,在抛物线上,点 在轴上,则 与的面积之比是
A. B. C. D.
7.(2015·浙江高考真题(文))如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是
A.直线 B.抛物线
C.椭圆 D.双曲线的一支
8.(2014·浙江高考真题(文))已知圆截直线所得弦的长度为4,则实数的值为( )
A. B. C. D.
9.(2013·浙江高考真题(理))如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )
A. B. C. D.
10.(2012·浙江高考真题(理))如图,F1,F2分别是双曲线C:(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是
A. B.
C. D.
11.(2012·浙江高考真题(文))如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是
A.3 B.2 C. D.
12.(2011·浙江高考真题(理))已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2= B.a2=3 C.b2= D.b2=2
二、填空题
15.(2019·浙江高考真题)已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.
16.(2018·浙江高考真题)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.
17.(2016·浙江高考真题(理))若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是_______.
18.(2016·浙江高考真题(文))已知,方程表示圆,则圆心坐标是_____,半径是______.
19.(2016·浙江高考真题(文))设双曲线x2–=1的左、右焦点分别为F1,F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是_______.
20.(2015·浙江高考真题(文))椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 .
21.(2012·浙江高考真题(文))定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x 2+a到直线l:y=x的距离等于C2:x 2+(y+4) 2 =2到直线l:y=x的距离,则实数a=______________.
三、解答题
22.(2021·浙江高考真题)如图,已知F是抛物线的焦点,M是抛物线的准线与x轴的交点,且,
(1)求抛物线的方程;
(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线,x轴依次交于点P,Q,R,N,且,求直线l在x轴上截距的范围.
23.(2020·浙江高考真题)如图,已知椭圆,抛物线,点A是椭圆与抛物线的交点,过点A的直线l交椭圆于点B,交抛物线于M(B,M不同于A).
(Ⅰ)若,求抛物线的焦点坐标;
(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
24.(2019·浙江高考真题)如图,已知点为抛物线的焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.
(1)求的值及抛物线的准线方程;
(2)求的最小值及此时点的坐标.
25.(2018·浙江高考真题)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.
(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.
26.(2017·浙江高考真题)如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q
(I)求直线AP斜率的取值范围;
(II)求的最大值
27.(2016·浙江高考真题(理))如图,设椭圆(a>1).
(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
28.(2015·浙江高考真题(文))如图,已知抛物线,圆,过点 作不过原点O的直线PA,PB分别与抛物线和圆 相切,A,B为切点.
(1)求点A,B的坐标;
(2)求的面积.
注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.
29.(2015·浙江高考真题(理))已知椭圆上两个不同的点,关于直线对称.
(1)求实数的取值范围;
(2)求面积的最大值(为坐标原点).
30.(2014·浙江高考真题(理))如图,设椭圆动直线与椭圆只有一个公共点,且点在第一象限.
(1)已知直线的斜率为,用表示点的坐标;
(2)若过原点的直线与垂直,证明:点到直线的距离的最大值为.
31.(2013·浙江高考真题(文))已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.
32.(2014·浙江高考真题(文))已知的三个顶点在抛物线:上,抛物线的焦点,点为的中点,;
(1)若,求点的坐标;
(2)求面积的最大值.
33.(2012·浙江高考真题(理))如图,椭圆C:(a>b>0)的离心率为 ,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 求ABP的面积取最大时直线l的方程.
34.(2012·浙江高考真题(文))如图,在直角坐标系中,点到抛物线的准线的距离为,点是上的定点,是上的两动点,且线段被直线平分.
(1)求的值.
(2)求面积的最大值.
35.(2011·浙江高考真题(理))已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M
(1)求点M到抛物线C1的准线的距离;
(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l的方程.
专题05 平面解析几何-十年高考数学(文)客观题(2012-2021)真题分项详解: 这是一份专题05 平面解析几何-十年高考数学(文)客观题(2012-2021)真题分项详解,文件包含专题05平面解析几何解析版-十年高考数学文客观题2012-2021真题分项详解doc、专题05平面解析几何原卷版-十年高考数学文客观题2012-2021真题分项详解doc等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。
专题10 复数-十年(2012-2021)高考数学真题分项汇编(浙江专用): 这是一份专题10 复数-十年(2012-2021)高考数学真题分项汇编(浙江专用),文件包含专题10复数原卷版docx、专题10复数解析版docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
专题09 计数原理与概率统计-十年(2012-2021)高考数学真题分项汇编(浙江专用): 这是一份专题09 计数原理与概率统计-十年(2012-2021)高考数学真题分项汇编(浙江专用),文件包含专题09计数原理与概率统计原卷版docx、专题09计数原理与概率统计解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。