冀教版八年级上册第十七章 特殊三角形17.3 勾股定理备课ppt课件
展开这是一份冀教版八年级上册第十七章 特殊三角形17.3 勾股定理备课ppt课件,共22页。PPT课件主要包含了a2+b2c2,勾股定理,“勾股圆方图”,实践与探索,小实验,本节课你有什么收获等内容,欢迎下载使用。
1.经历 探索和验证勾股定理的过程,发展对图形性质或数量关系猜想及检验的能力,体会拼图验证的合理性。2.能够利用勾股定理解决一些简单的实际问题
2002年世界数学家大会会标
你知道吗: 我国著名数学家华罗庚曾建议,在试探其他星球是否存在“人类”而向宇宙传达的信息中,应包括图1(1)所示的图形,这个图形蕴涵着怎样的人类科学文明信息呢?
1.在图1中,∆ ABC是直角三角形,∠ ACB=90° 如果每个小方格子都是边长为1的正方形,那么Rt ∆ABC的三边AC,BC,AB的长各是多少?以AC,BC,AB为边的三个正方形的面积各是多少?这些面积之间具有怎样的等量关系?
2.如图2,每个小方格都是正方形, ∠ ACB=90°,分别以AC,BC,AB为边的三个正方形的面积之间有怎样的关系?
3.如图3,如果这个直角三角形的三边长分别是a,b,c,那么可以怎样用a,b,c把图中三个正方形面积之间的关系表示出来呢?
观察所得到的各组数据,猜想两直角边a、b与斜边c 之间的关系?
直角三角形两直角边的平方和等于斜边的平方.
两千多年前,古希腊有个哥拉
斯学派,他们首先发现了勾股定理,因此
在国外人们通常称勾股定理为毕达哥拉斯
年希腊曾经发行了一枚纪念票。
定理。为了纪念毕达哥拉斯学派,1955
国家之一。早在三千多年前,
国家之一。早在三千多年前
两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
用两种方法表示大正方形的面积:
我们用拼图的方法来说明勾股定理是正确的
c2=(b a)2 + 4(½ab)=b2 2ab + a2 + 2ab
a2 + b2 = c2
美国第二十任总统伽菲尔德的证法:
1、判断题: 1)若△ABC是直角三角形,直角边a=6,b=8, 则c=10. 2) 直角三角形的两边长分别是3和4,则另一边是5 3)直角三角形三边a,b,c一定满足下面的式子: a²+b² =c²
2.求下列图中表示边的未知数x、y、z的值.
3.求下列直角三角形中未知边的长:
1、如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为 ( )
A.3 米 B.4 米 C.5米 D.6米
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为 ( )
A.50米 B.120米 C.100米 D.130米
如图,分别以直角三角形的三边为直径作三个半圆,这三个半圆的面积之间有什么关系?为什么?
课本152页:习题1,2,3题.
相关课件
这是一份冀教版八年级上册17.3 勾股定理课文配套课件ppt,共22页。PPT课件主要包含了故事分享,一起探究,请你猜想,探究可知,推导证明,赵爽弦图,设未知量,找等量关系,代数证法,总统法等内容,欢迎下载使用。
这是一份初中数学17.3 勾股定理说课ppt课件,共24页。PPT课件主要包含了荷花问题,抢红包啦,我能行,我挑战,“分类讨论”,我突破,我勇敢,解决荷花问题,勾股定理的历史等内容,欢迎下载使用。
这是一份初中数学冀教版八年级上册17.3 勾股定理备课ppt课件,共24页。PPT课件主要包含了SA+SBSC,尝试应用,美丽的毕达哥拉斯树,漂亮的勾股树,教师寄语,作业快餐等内容,欢迎下载使用。